基于聚类的多特征检测模型在生产消费者在场情况下的窃电检测

Arwa Alromih, John A. Clark, P. Gope
{"title":"基于聚类的多特征检测模型在生产消费者在场情况下的窃电检测","authors":"Arwa Alromih, John A. Clark, P. Gope","doi":"10.36227/techrxiv.16644652","DOIUrl":null,"url":null,"abstract":"Data driven approaches have been widely employed in recent years to detect electricity thefts. Although many techniques have been proposed in the literature, they mainly focus on electricity thefts by consumers of power from the grid. Existing studies do not consider electricity thefts by prosumers, who act as both supplier and consumer in the energy system. This is of great importance as inaccurate reports of prosumers' behaviours can disturb power system operation. Here, the paper examines the role prosumers may play in subverting the energy system and propose a novel means of detecting such malfeasance. Specifically, this work introduces a new electricity theft attack scenarios called balance attacks, where an attacker concurrently modifies his readings along with neighbouring meters in an attempt to balance the total aggregated reading. Such attacks can be difficult to detect by existing solutions that reach detection decisions based on aggregated readings. A novel electricity theft detector is proposed that can detect thefts in the presence of prosumers. Current approaches use either a single model for all users across the system or else a model for each user. Here, a half-way house approach is adopted where a cluster-based detection model is used. In each cluster, the power time series for a user is decomposed into trend, cyclical and residual components. Residual data, along with different features from multiple data sources, are fed in an ML classification algorithm to detect anomalous readings. Simulations have been conducted using a newly generated dataset and results have shown that the proposed model can detect electricity theft with high detection and low error rates. The results also shows that the proposed model can detect thefts with great accuracy from new users.","PeriodicalId":378884,"journal":{"name":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Electricity Theft Detection in the Presence of Prosumers Using a Cluster-based Multi-feature Detection Model\",\"authors\":\"Arwa Alromih, John A. Clark, P. Gope\",\"doi\":\"10.36227/techrxiv.16644652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data driven approaches have been widely employed in recent years to detect electricity thefts. Although many techniques have been proposed in the literature, they mainly focus on electricity thefts by consumers of power from the grid. Existing studies do not consider electricity thefts by prosumers, who act as both supplier and consumer in the energy system. This is of great importance as inaccurate reports of prosumers' behaviours can disturb power system operation. Here, the paper examines the role prosumers may play in subverting the energy system and propose a novel means of detecting such malfeasance. Specifically, this work introduces a new electricity theft attack scenarios called balance attacks, where an attacker concurrently modifies his readings along with neighbouring meters in an attempt to balance the total aggregated reading. Such attacks can be difficult to detect by existing solutions that reach detection decisions based on aggregated readings. A novel electricity theft detector is proposed that can detect thefts in the presence of prosumers. Current approaches use either a single model for all users across the system or else a model for each user. Here, a half-way house approach is adopted where a cluster-based detection model is used. In each cluster, the power time series for a user is decomposed into trend, cyclical and residual components. Residual data, along with different features from multiple data sources, are fed in an ML classification algorithm to detect anomalous readings. Simulations have been conducted using a newly generated dataset and results have shown that the proposed model can detect electricity theft with high detection and low error rates. The results also shows that the proposed model can detect thefts with great accuracy from new users.\",\"PeriodicalId\":378884,\"journal\":{\"name\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36227/techrxiv.16644652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36227/techrxiv.16644652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近年来,数据驱动的方法被广泛用于检测电力盗窃。虽然文献中提出了许多技术,但它们主要集中在电网电力消费者的电力盗窃上。现有的研究没有考虑到产消者的窃电行为,他们在能源系统中既是供应商又是消费者。这一点非常重要,因为对产消者行为的不准确报告可能会扰乱电力系统的运行。本文探讨了产消者在颠覆能源系统中可能扮演的角色,并提出了一种检测此类不法行为的新方法。具体来说,这项工作引入了一种新的电力盗窃攻击场景,称为平衡攻击,攻击者同时修改他的读数以及邻近的仪表,试图平衡总汇总读数。现有的基于聚合读数的检测决策的解决方案很难检测到此类攻击。提出了一种新型的电力盗窃探测器,可以在生产消费者在场的情况下检测到盗窃行为。当前的方法要么为整个系统中的所有用户使用单个模型,要么为每个用户使用一个模型。本文采用了基于聚类的检测模型,采用了一种“中途屋”方法。在每个聚类中,将用户功率时间序列分解为趋势分量、周期分量和残差分量。残差数据,以及来自多个数据源的不同特征,在ML分类算法中进行输入,以检测异常读数。使用新生成的数据集进行了仿真,结果表明该模型可以检测到高检出率和低错误率的窃电行为。结果还表明,该模型可以很准确地检测新用户的盗窃行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electricity Theft Detection in the Presence of Prosumers Using a Cluster-based Multi-feature Detection Model
Data driven approaches have been widely employed in recent years to detect electricity thefts. Although many techniques have been proposed in the literature, they mainly focus on electricity thefts by consumers of power from the grid. Existing studies do not consider electricity thefts by prosumers, who act as both supplier and consumer in the energy system. This is of great importance as inaccurate reports of prosumers' behaviours can disturb power system operation. Here, the paper examines the role prosumers may play in subverting the energy system and propose a novel means of detecting such malfeasance. Specifically, this work introduces a new electricity theft attack scenarios called balance attacks, where an attacker concurrently modifies his readings along with neighbouring meters in an attempt to balance the total aggregated reading. Such attacks can be difficult to detect by existing solutions that reach detection decisions based on aggregated readings. A novel electricity theft detector is proposed that can detect thefts in the presence of prosumers. Current approaches use either a single model for all users across the system or else a model for each user. Here, a half-way house approach is adopted where a cluster-based detection model is used. In each cluster, the power time series for a user is decomposed into trend, cyclical and residual components. Residual data, along with different features from multiple data sources, are fed in an ML classification algorithm to detect anomalous readings. Simulations have been conducted using a newly generated dataset and results have shown that the proposed model can detect electricity theft with high detection and low error rates. The results also shows that the proposed model can detect thefts with great accuracy from new users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-complexity Risk-averse MPC for EMS Modeling framework for study of distributed and centralized smart grid system services Data-Driven Frequency Regulation Reserve Prediction Based on Deep Learning Approach Data Communication Interfaces in Smart Grid Real-time Simulations: Challenges and Solutions Modeling of Cyber Attacks Against Converter-Driven Stability of PMSG-Based Wind Farms with Intentional Subsynchronous Resonance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1