从视觉输入自动构建定性事件模型

Jonathan H. Fernyhough, A. Cohn, David C. Hogg
{"title":"从视觉输入自动构建定性事件模型","authors":"Jonathan H. Fernyhough, A. Cohn, David C. Hogg","doi":"10.1109/ICCV.1998.710742","DOIUrl":null,"url":null,"abstract":"We describe an implemented technique for generating event models automatically based on qualitative reasoning and a statistical analysis of video input. Using an existing tracking program which generates labelled contours for objects in every frame, the view from a fixed camera is partitioned into semantically relevant regions based on the paths followed by moving objects. The paths are indexed with temporal information so objects moving along the same path at different speeds can be distinguished. Using a notion of proximity based on the speed of the moving objects and qualitative spatial reasoning techniques, event models describing the behaviour of pairs of objects can be built, again using statistical methods. The system has been tested on a traffic domain and learns various event models expressed in the qualitative calculus which represent human observable events. The system can then be used to recognise subsequent selected event occurrences or unusual behaviours.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Building qualitative event models automatically from visual input\",\"authors\":\"Jonathan H. Fernyhough, A. Cohn, David C. Hogg\",\"doi\":\"10.1109/ICCV.1998.710742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe an implemented technique for generating event models automatically based on qualitative reasoning and a statistical analysis of video input. Using an existing tracking program which generates labelled contours for objects in every frame, the view from a fixed camera is partitioned into semantically relevant regions based on the paths followed by moving objects. The paths are indexed with temporal information so objects moving along the same path at different speeds can be distinguished. Using a notion of proximity based on the speed of the moving objects and qualitative spatial reasoning techniques, event models describing the behaviour of pairs of objects can be built, again using statistical methods. The system has been tested on a traffic domain and learns various event models expressed in the qualitative calculus which represent human observable events. The system can then be used to recognise subsequent selected event occurrences or unusual behaviours.\",\"PeriodicalId\":270671,\"journal\":{\"name\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.1998.710742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

我们描述了一种基于定性推理和视频输入统计分析自动生成事件模型的实现技术。使用现有的跟踪程序,该程序在每一帧中为物体生成标记轮廓,根据移动物体所遵循的路径将固定摄像机的视图划分为语义相关的区域。这些路径是用时间信息索引的,因此可以区分以不同速度沿着同一路径移动的物体。使用基于移动物体速度的接近概念和定性空间推理技术,可以建立描述成对物体行为的事件模型,再次使用统计方法。该系统已在交通领域进行了测试,并学习了用定性演算表示的各种事件模型,这些模型表示人类可观察到的事件。然后,该系统可用于识别随后选定的事件发生或异常行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Building qualitative event models automatically from visual input
We describe an implemented technique for generating event models automatically based on qualitative reasoning and a statistical analysis of video input. Using an existing tracking program which generates labelled contours for objects in every frame, the view from a fixed camera is partitioned into semantically relevant regions based on the paths followed by moving objects. The paths are indexed with temporal information so objects moving along the same path at different speeds can be distinguished. Using a notion of proximity based on the speed of the moving objects and qualitative spatial reasoning techniques, event models describing the behaviour of pairs of objects can be built, again using statistical methods. The system has been tested on a traffic domain and learns various event models expressed in the qualitative calculus which represent human observable events. The system can then be used to recognise subsequent selected event occurrences or unusual behaviours.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparing and evaluating interest points Snake pedals: geometric models with physics-based control Recovering epipolar geometry by reactive tabu search Utilization of stereo disparity and optical flow information for human interaction Intensity and feature based stereo matching by disparity parameterization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1