基于病人规则归纳法的分类器

Rym Nassih, A. Berrado
{"title":"基于病人规则归纳法的分类器","authors":"Rym Nassih, A. Berrado","doi":"10.1109/ICSSD47982.2019.9003097","DOIUrl":null,"url":null,"abstract":"This paper is an overview of the bump hunting algorithm and in particular the Patient Rule Induction Method and its applications. We also give an overview about interpretability in several key supervised data mining algorithms. This allows for exploring the potential for using PRIM, with its interpretation capability, as a core technology towards building a highly accurate and interpretable classifier in a mixed data space.","PeriodicalId":342806,"journal":{"name":"2019 1st International Conference on Smart Systems and Data Science (ICSSD)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards a patient rule induction method based classifier\",\"authors\":\"Rym Nassih, A. Berrado\",\"doi\":\"10.1109/ICSSD47982.2019.9003097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is an overview of the bump hunting algorithm and in particular the Patient Rule Induction Method and its applications. We also give an overview about interpretability in several key supervised data mining algorithms. This allows for exploring the potential for using PRIM, with its interpretation capability, as a core technology towards building a highly accurate and interpretable classifier in a mixed data space.\",\"PeriodicalId\":342806,\"journal\":{\"name\":\"2019 1st International Conference on Smart Systems and Data Science (ICSSD)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 1st International Conference on Smart Systems and Data Science (ICSSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSD47982.2019.9003097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 1st International Conference on Smart Systems and Data Science (ICSSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSD47982.2019.9003097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文概述了凹凸搜索算法,特别是病人规则归纳法及其应用。我们还概述了几种关键的监督数据挖掘算法的可解释性。这允许探索使用PRIM及其解释能力的潜力,作为在混合数据空间中构建高度准确和可解释的分类器的核心技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards a patient rule induction method based classifier
This paper is an overview of the bump hunting algorithm and in particular the Patient Rule Induction Method and its applications. We also give an overview about interpretability in several key supervised data mining algorithms. This allows for exploring the potential for using PRIM, with its interpretation capability, as a core technology towards building a highly accurate and interpretable classifier in a mixed data space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determination of Merchant Ships that Most Likely to be Autonomously Operated Adaptation of Classical Machine Learning Algorithms to Big Data Context: Problems and Challenges : Case Study: Hidden Markov Models Under Spark Predictive Process Monitoring related to the remaining time dimension: a value-driven framework Decomposition and Visualization of High-Dimensional Data in a Two Dimensional Interface Black SDN for WSN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1