使用硬件加速器的边缘计算动态资源管理算法

Robert Canady
{"title":"使用硬件加速器的边缘计算动态资源管理算法","authors":"Robert Canady","doi":"10.1145/3366624.3368167","DOIUrl":null,"url":null,"abstract":"Many Internet of Things (IoT) applications must perform their Big Data analytics tasks at the edge to meet their real-time needs and overcome the constraints on and reliability of network resources. Since traditional CPUs cannot meet these demands, solutions are sought by using accelerator hardware such as FPGAs, GPUs and TPUs to address these challenges. My doctoral research is focusing on ascertaining the feasibility of utilizing these accelerators for real-time IoT Big Data analytics, and in turn investigating dynamic resource management algorithms to schedule edge-based accelerator resources in the presence of highly dynamic IoT workloads.","PeriodicalId":376496,"journal":{"name":"Proceedings of the 20th International Middleware Conference Doctoral Symposium","volume":"50 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic resource management algorithms for edge computing using hardware accelerators\",\"authors\":\"Robert Canady\",\"doi\":\"10.1145/3366624.3368167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many Internet of Things (IoT) applications must perform their Big Data analytics tasks at the edge to meet their real-time needs and overcome the constraints on and reliability of network resources. Since traditional CPUs cannot meet these demands, solutions are sought by using accelerator hardware such as FPGAs, GPUs and TPUs to address these challenges. My doctoral research is focusing on ascertaining the feasibility of utilizing these accelerators for real-time IoT Big Data analytics, and in turn investigating dynamic resource management algorithms to schedule edge-based accelerator resources in the presence of highly dynamic IoT workloads.\",\"PeriodicalId\":376496,\"journal\":{\"name\":\"Proceedings of the 20th International Middleware Conference Doctoral Symposium\",\"volume\":\"50 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th International Middleware Conference Doctoral Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3366624.3368167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th International Middleware Conference Doctoral Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366624.3368167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多物联网(IoT)应用程序必须在边缘执行大数据分析任务,以满足其实时需求,并克服网络资源的限制和可靠性。由于传统的cpu无法满足这些需求,因此通过使用fpga, gpu和tpu等加速器硬件来寻求解决方案来应对这些挑战。我的博士研究重点是确定利用这些加速器进行实时物联网大数据分析的可行性,并反过来研究动态资源管理算法,以便在高度动态的物联网工作负载下调度基于边缘的加速器资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic resource management algorithms for edge computing using hardware accelerators
Many Internet of Things (IoT) applications must perform their Big Data analytics tasks at the edge to meet their real-time needs and overcome the constraints on and reliability of network resources. Since traditional CPUs cannot meet these demands, solutions are sought by using accelerator hardware such as FPGAs, GPUs and TPUs to address these challenges. My doctoral research is focusing on ascertaining the feasibility of utilizing these accelerators for real-time IoT Big Data analytics, and in turn investigating dynamic resource management algorithms to schedule edge-based accelerator resources in the presence of highly dynamic IoT workloads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic resource management algorithms for edge computing using hardware accelerators High-performance complex event processing framework to detect event patterns over video streams Troubleshooting distributed data analytics systems Self-organizing middleware for cyber-physical networks Efficient storage support for unikernels as containers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1