Pengfei Wu, Dezhi Duan, Guochen Wang, Runfeng Zhang, Jiachong Chang
{"title":"传热速率对光纤陀螺热致非倒数误差的影响","authors":"Pengfei Wu, Dezhi Duan, Guochen Wang, Runfeng Zhang, Jiachong Chang","doi":"10.1109/CPGPS.2017.8075092","DOIUrl":null,"url":null,"abstract":"In this paper, the model of thermally induced nonreciprocal error is established in three-dimensional cylindrical coordinate system. Make finite-element thermal analysis for fiber loop to get the simulated result of temperature field inside the fiber loop by ANSYS based on the actual temperature on the surface of fiber loop detected under the static condition, get heat transfer rates by comparing area of regions where temperature changes inside the fiber loop section at the equal time intervals, through which we can guess the relationship between the thermally induced nonreciprocal error and heat-transfer rate. Different heat transfer rates are achieved by changing layers of fiber loop under the premise of the same fiber length and the same thermal load, then gain temperature curves of center node on different models. Program the algorithm based on the Shupe effect and the theory of thermal stress to calculate the thermally induced nonreciprocity error for different fiber loop models, which is convenient to determine the optimal layers based on quadrupole winding method. This paper shows the relationship between thermally induced nonreciprocal error and the heat transfer rate.","PeriodicalId":340067,"journal":{"name":"2017 Forum on Cooperative Positioning and Service (CPGPS)","volume":"98 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of heat transfer rate on the thermally induced nonreciprocal error of FOG\",\"authors\":\"Pengfei Wu, Dezhi Duan, Guochen Wang, Runfeng Zhang, Jiachong Chang\",\"doi\":\"10.1109/CPGPS.2017.8075092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the model of thermally induced nonreciprocal error is established in three-dimensional cylindrical coordinate system. Make finite-element thermal analysis for fiber loop to get the simulated result of temperature field inside the fiber loop by ANSYS based on the actual temperature on the surface of fiber loop detected under the static condition, get heat transfer rates by comparing area of regions where temperature changes inside the fiber loop section at the equal time intervals, through which we can guess the relationship between the thermally induced nonreciprocal error and heat-transfer rate. Different heat transfer rates are achieved by changing layers of fiber loop under the premise of the same fiber length and the same thermal load, then gain temperature curves of center node on different models. Program the algorithm based on the Shupe effect and the theory of thermal stress to calculate the thermally induced nonreciprocity error for different fiber loop models, which is convenient to determine the optimal layers based on quadrupole winding method. This paper shows the relationship between thermally induced nonreciprocal error and the heat transfer rate.\",\"PeriodicalId\":340067,\"journal\":{\"name\":\"2017 Forum on Cooperative Positioning and Service (CPGPS)\",\"volume\":\"98 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Forum on Cooperative Positioning and Service (CPGPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CPGPS.2017.8075092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Forum on Cooperative Positioning and Service (CPGPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPGPS.2017.8075092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The influence of heat transfer rate on the thermally induced nonreciprocal error of FOG
In this paper, the model of thermally induced nonreciprocal error is established in three-dimensional cylindrical coordinate system. Make finite-element thermal analysis for fiber loop to get the simulated result of temperature field inside the fiber loop by ANSYS based on the actual temperature on the surface of fiber loop detected under the static condition, get heat transfer rates by comparing area of regions where temperature changes inside the fiber loop section at the equal time intervals, through which we can guess the relationship between the thermally induced nonreciprocal error and heat-transfer rate. Different heat transfer rates are achieved by changing layers of fiber loop under the premise of the same fiber length and the same thermal load, then gain temperature curves of center node on different models. Program the algorithm based on the Shupe effect and the theory of thermal stress to calculate the thermally induced nonreciprocity error for different fiber loop models, which is convenient to determine the optimal layers based on quadrupole winding method. This paper shows the relationship between thermally induced nonreciprocal error and the heat transfer rate.