从意见网络中寻找领导者

Hengmin Zhou, D. Zeng, Changli Zhang
{"title":"从意见网络中寻找领导者","authors":"Hengmin Zhou, D. Zeng, Changli Zhang","doi":"10.1109/ISI.2009.5137323","DOIUrl":null,"url":null,"abstract":"This paper is motivated to utilize results from opinion mining to facilitate social network analysis. We introduce the concept of Opinion Networks and propose a PageRank-like algorithm, named OpinionRank, to rank the nodes in an opinion network. This proposed approach has been applied to real-world datasets and initial experiments indicate that the sentiment information is helpful for finding leaders of online communities and that the OpinionRank method outperforms benchmark methods that ignore sentiment information.","PeriodicalId":210911,"journal":{"name":"2009 IEEE International Conference on Intelligence and Security Informatics","volume":"64 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Finding leaders from opinion networks\",\"authors\":\"Hengmin Zhou, D. Zeng, Changli Zhang\",\"doi\":\"10.1109/ISI.2009.5137323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is motivated to utilize results from opinion mining to facilitate social network analysis. We introduce the concept of Opinion Networks and propose a PageRank-like algorithm, named OpinionRank, to rank the nodes in an opinion network. This proposed approach has been applied to real-world datasets and initial experiments indicate that the sentiment information is helpful for finding leaders of online communities and that the OpinionRank method outperforms benchmark methods that ignore sentiment information.\",\"PeriodicalId\":210911,\"journal\":{\"name\":\"2009 IEEE International Conference on Intelligence and Security Informatics\",\"volume\":\"64 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Intelligence and Security Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2009.5137323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2009.5137323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

本文的动机是利用意见挖掘的结果来促进社会网络分析。我们引入了意见网络的概念,并提出了一种类似pagerank的算法,名为OpinionRank,用于对意见网络中的节点进行排名。该方法已应用于现实世界的数据集,初步实验表明,情感信息有助于寻找在线社区的领导者,并且OpinionRank方法优于忽略情感信息的基准方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finding leaders from opinion networks
This paper is motivated to utilize results from opinion mining to facilitate social network analysis. We introduce the concept of Opinion Networks and propose a PageRank-like algorithm, named OpinionRank, to rank the nodes in an opinion network. This proposed approach has been applied to real-world datasets and initial experiments indicate that the sentiment information is helpful for finding leaders of online communities and that the OpinionRank method outperforms benchmark methods that ignore sentiment information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Social network classification incorporating link type values Weaving ontologies to support digital forensic analysis Building a better password: The role of cognitive load in information security training Web opinions analysis with scalable distance-based clustering A Higher Order Collective Classifier for detecting and classifying network events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1