G. Haase, G. Kirakossian, Gagik H. Kirakosyan, Vazgen A. Mkrtchyan
{"title":"农田灌溉太阳能水泵优化设计","authors":"G. Haase, G. Kirakossian, Gagik H. Kirakosyan, Vazgen A. Mkrtchyan","doi":"10.22630/srees.4994","DOIUrl":null,"url":null,"abstract":"An investigation into the design of a stand-alone solar water pumping station for supplying rural areas is presented. It includes a study of system components and their modeling. The solar water pumping station comprises a solar panel, DC/DC buck converter, DC motor driving a centrifugal pump, and a reservoir. The fuzzy-based maximum power point tracker is developed to optimize the drive speed and the water discharge rate of the coupled centrifugal pump. These use dN/I, d(dN/dI) use parameters, and a variation of the fill factor∆α as input variables. The proposed solution is based on a judicious fuzzy adjustment of a converter fill factor, which adapts online the load impedance to the solar panel. The simulation results show the effectiveness of the drive system for both transient and steady-state operations. Hence, it is suitable to use this fuzzy logic procedure as a standard optimization algorithm for such solar water pumping stations. The modeling is carried out in MATLAB/Simulink.","PeriodicalId":201498,"journal":{"name":"Scientific Review Engineering and Environmental Sciences (SREES)","volume":"72 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing optimal solar water pumping stations for irrigation of agricultural lands\",\"authors\":\"G. Haase, G. Kirakossian, Gagik H. Kirakosyan, Vazgen A. Mkrtchyan\",\"doi\":\"10.22630/srees.4994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An investigation into the design of a stand-alone solar water pumping station for supplying rural areas is presented. It includes a study of system components and their modeling. The solar water pumping station comprises a solar panel, DC/DC buck converter, DC motor driving a centrifugal pump, and a reservoir. The fuzzy-based maximum power point tracker is developed to optimize the drive speed and the water discharge rate of the coupled centrifugal pump. These use dN/I, d(dN/dI) use parameters, and a variation of the fill factor∆α as input variables. The proposed solution is based on a judicious fuzzy adjustment of a converter fill factor, which adapts online the load impedance to the solar panel. The simulation results show the effectiveness of the drive system for both transient and steady-state operations. Hence, it is suitable to use this fuzzy logic procedure as a standard optimization algorithm for such solar water pumping stations. The modeling is carried out in MATLAB/Simulink.\",\"PeriodicalId\":201498,\"journal\":{\"name\":\"Scientific Review Engineering and Environmental Sciences (SREES)\",\"volume\":\"72 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Review Engineering and Environmental Sciences (SREES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22630/srees.4994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Review Engineering and Environmental Sciences (SREES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22630/srees.4994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Designing optimal solar water pumping stations for irrigation of agricultural lands
An investigation into the design of a stand-alone solar water pumping station for supplying rural areas is presented. It includes a study of system components and their modeling. The solar water pumping station comprises a solar panel, DC/DC buck converter, DC motor driving a centrifugal pump, and a reservoir. The fuzzy-based maximum power point tracker is developed to optimize the drive speed and the water discharge rate of the coupled centrifugal pump. These use dN/I, d(dN/dI) use parameters, and a variation of the fill factor∆α as input variables. The proposed solution is based on a judicious fuzzy adjustment of a converter fill factor, which adapts online the load impedance to the solar panel. The simulation results show the effectiveness of the drive system for both transient and steady-state operations. Hence, it is suitable to use this fuzzy logic procedure as a standard optimization algorithm for such solar water pumping stations. The modeling is carried out in MATLAB/Simulink.