{"title":"Lucas-Kanade图像配准算法在GPU上的实现,用于三维计算平台稳定","authors":"B. Duvenhage, J. Delport, J. D. Villiers","doi":"10.1145/1811158.1811172","DOIUrl":null,"url":null,"abstract":"Image registration forms the basis of many computer vision tasks. The Lucas-Kanade image registration algorithm is known to efficiently solve the sub-problem of rigid image registration. It is therefore often used in image stabilisation applications. This paper presents the details of a real-time implementation of the Lucas-Kanade image registration algorithm on a Graphics Processing Unit (GPU) using the OpenGL Shading Language (GLSL). The implementation is driven by a real world requirement to computationally stabilise the undulatory motion of an ocean-based wide area surveillance system.","PeriodicalId":325699,"journal":{"name":"International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa","volume":"9 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Implementation of the Lucas-Kanade image registration algorithm on a GPU for 3D computational platform stabilisation\",\"authors\":\"B. Duvenhage, J. Delport, J. D. Villiers\",\"doi\":\"10.1145/1811158.1811172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image registration forms the basis of many computer vision tasks. The Lucas-Kanade image registration algorithm is known to efficiently solve the sub-problem of rigid image registration. It is therefore often used in image stabilisation applications. This paper presents the details of a real-time implementation of the Lucas-Kanade image registration algorithm on a Graphics Processing Unit (GPU) using the OpenGL Shading Language (GLSL). The implementation is driven by a real world requirement to computationally stabilise the undulatory motion of an ocean-based wide area surveillance system.\",\"PeriodicalId\":325699,\"journal\":{\"name\":\"International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa\",\"volume\":\"9 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1811158.1811172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1811158.1811172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementation of the Lucas-Kanade image registration algorithm on a GPU for 3D computational platform stabilisation
Image registration forms the basis of many computer vision tasks. The Lucas-Kanade image registration algorithm is known to efficiently solve the sub-problem of rigid image registration. It is therefore often used in image stabilisation applications. This paper presents the details of a real-time implementation of the Lucas-Kanade image registration algorithm on a Graphics Processing Unit (GPU) using the OpenGL Shading Language (GLSL). The implementation is driven by a real world requirement to computationally stabilise the undulatory motion of an ocean-based wide area surveillance system.