纳米生物传感的超高频(500 MHz)电容光谱

A. Cossettini, Denis Brandalise, P. Palestri, A. Bertacchini, M. Ramponi, F. Widdershoven, L. Benini, L. Selmi
{"title":"纳米生物传感的超高频(500 MHz)电容光谱","authors":"A. Cossettini, Denis Brandalise, P. Palestri, A. Bertacchini, M. Ramponi, F. Widdershoven, L. Benini, L. Selmi","doi":"10.1109/SENSORS47125.2020.9278583","DOIUrl":null,"url":null,"abstract":"We report unprecedented ultra high frequency capacitance spectroscopy measurements up to 500 MHz on a nanoelectrode array for biosensing applications, which extends considerably the previous 70 MHz limit. To achieve this goal, a high-frequency adapter board and measurement system are designed to drive the sensing nanoelectrodes of an existing biochip with appropriate clocks generated by an advanced high-speed pulser. Experimental results in dry and in electrolyte conditions are reported. The extended frequency range enables to overcome the Debye screening cut-off frequency of electrolytes at physiological salt concentrations, thus disclosing new perspectives for single molecule detection.","PeriodicalId":338240,"journal":{"name":"2020 IEEE Sensors","volume":"AES-22 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ultra-High Frequency (500 MHz) Capacitance Spectroscopy for Nanobiosensing\",\"authors\":\"A. Cossettini, Denis Brandalise, P. Palestri, A. Bertacchini, M. Ramponi, F. Widdershoven, L. Benini, L. Selmi\",\"doi\":\"10.1109/SENSORS47125.2020.9278583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report unprecedented ultra high frequency capacitance spectroscopy measurements up to 500 MHz on a nanoelectrode array for biosensing applications, which extends considerably the previous 70 MHz limit. To achieve this goal, a high-frequency adapter board and measurement system are designed to drive the sensing nanoelectrodes of an existing biochip with appropriate clocks generated by an advanced high-speed pulser. Experimental results in dry and in electrolyte conditions are reported. The extended frequency range enables to overcome the Debye screening cut-off frequency of electrolytes at physiological salt concentrations, thus disclosing new perspectives for single molecule detection.\",\"PeriodicalId\":338240,\"journal\":{\"name\":\"2020 IEEE Sensors\",\"volume\":\"AES-22 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS47125.2020.9278583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47125.2020.9278583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们报告了前所未有的超高频电容光谱测量高达500 MHz的纳米电极阵列生物传感应用,这大大扩展了以前的70 MHz的限制。为了实现这一目标,设计了高频适配器板和测量系统,以驱动现有生物芯片的传感纳米电极,并由先进的高速脉冲发生器产生适当的时钟。报道了干燥和电解质条件下的实验结果。扩展的频率范围能够克服生理盐浓度下电解质的Debye筛选截止频率,从而为单分子检测提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultra-High Frequency (500 MHz) Capacitance Spectroscopy for Nanobiosensing
We report unprecedented ultra high frequency capacitance spectroscopy measurements up to 500 MHz on a nanoelectrode array for biosensing applications, which extends considerably the previous 70 MHz limit. To achieve this goal, a high-frequency adapter board and measurement system are designed to drive the sensing nanoelectrodes of an existing biochip with appropriate clocks generated by an advanced high-speed pulser. Experimental results in dry and in electrolyte conditions are reported. The extended frequency range enables to overcome the Debye screening cut-off frequency of electrolytes at physiological salt concentrations, thus disclosing new perspectives for single molecule detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quartz Crystal Microbalance Sensor Based on Peptide Anchored Single-Walled Carbon Nanotubes for Highly Selective TNT Explosive Detection BaTiO3 sensitive film enhancement for CO2 detection Comparable Data Evaluation Method for a Radio-Nuclear Sensor When Used on an UAV Reusable acoustic tweezers enable 2D patterning of microparticles in microchamber on a disposable silicon chip superstrate Optimizing Novel Inorganic Scintillation Detectors for Applications in Medical Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1