J. Huh, Hyoungshick Kim, R. Bobba, Masooda N. Bashir, K. Beznosov
{"title":"关于系统生成pin的可记忆性:分块有帮助吗?","authors":"J. Huh, Hyoungshick Kim, R. Bobba, Masooda N. Bashir, K. Beznosov","doi":"10.5072/ZENODO.309748","DOIUrl":null,"url":null,"abstract":"To ensure that users do not choose weak personal identification numbers (PINs), many banks give out systemgenerated random PINs. 4-digit is the most commonly used PIN length, but 6-digit system-generated PINs are also becoming popular. The increased security we get from using system-generated PINs, however, comes at the cost of memorability. And while banks are increasingly adopting systemgenerated PINs, the impact on memorability of such PINs has not been studied. We conducted a large-scale online user study with 9,114 participants to investigate the impact of increased PIN length on the memorability of PINs, and whether number chunking 1 techniques (breaking a single number into multiple smaller numbers) can be applied to improve memorability for larger PIN lengths. As one would expect, our study shows that system-generated 4-digit PINs outperform 6-, 7-, and 8-digit PINs in long-term memorability. Interestingly, however, we find that there is no statistically significant difference in memorability between 6-, 7-, and 8-digit PINs, indicating that 7-, and 8-digit PINs should also be considered when looking to increase PIN length to 6-digits from currently common length of 4-digits for improved security. By grouping all 6-, 7-, and 8-digit chunked PINs together, and comparing them against a group of all non-chunked PINs, we find that chunking, overall, improves memorability of system-generated PINs. To our surprise, however, none of the individual chunking policies (e.g., 0000-00-00) showed statistically significant improvement over their peer non� Part of this work was done while Dr. Huh and Dr. Bobba were at the University of Illinois. 1 Note that our notion of chunking differs from the traditional notion in that we do not chunk numbers into semantically meaningful pieces.","PeriodicalId":273244,"journal":{"name":"Symposium On Usable Privacy and Security","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"On the Memorability of System-generated PINs: Can Chunking Help?\",\"authors\":\"J. Huh, Hyoungshick Kim, R. Bobba, Masooda N. Bashir, K. Beznosov\",\"doi\":\"10.5072/ZENODO.309748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To ensure that users do not choose weak personal identification numbers (PINs), many banks give out systemgenerated random PINs. 4-digit is the most commonly used PIN length, but 6-digit system-generated PINs are also becoming popular. The increased security we get from using system-generated PINs, however, comes at the cost of memorability. And while banks are increasingly adopting systemgenerated PINs, the impact on memorability of such PINs has not been studied. We conducted a large-scale online user study with 9,114 participants to investigate the impact of increased PIN length on the memorability of PINs, and whether number chunking 1 techniques (breaking a single number into multiple smaller numbers) can be applied to improve memorability for larger PIN lengths. As one would expect, our study shows that system-generated 4-digit PINs outperform 6-, 7-, and 8-digit PINs in long-term memorability. Interestingly, however, we find that there is no statistically significant difference in memorability between 6-, 7-, and 8-digit PINs, indicating that 7-, and 8-digit PINs should also be considered when looking to increase PIN length to 6-digits from currently common length of 4-digits for improved security. By grouping all 6-, 7-, and 8-digit chunked PINs together, and comparing them against a group of all non-chunked PINs, we find that chunking, overall, improves memorability of system-generated PINs. To our surprise, however, none of the individual chunking policies (e.g., 0000-00-00) showed statistically significant improvement over their peer non� Part of this work was done while Dr. Huh and Dr. Bobba were at the University of Illinois. 1 Note that our notion of chunking differs from the traditional notion in that we do not chunk numbers into semantically meaningful pieces.\",\"PeriodicalId\":273244,\"journal\":{\"name\":\"Symposium On Usable Privacy and Security\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium On Usable Privacy and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5072/ZENODO.309748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium On Usable Privacy and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5072/ZENODO.309748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Memorability of System-generated PINs: Can Chunking Help?
To ensure that users do not choose weak personal identification numbers (PINs), many banks give out systemgenerated random PINs. 4-digit is the most commonly used PIN length, but 6-digit system-generated PINs are also becoming popular. The increased security we get from using system-generated PINs, however, comes at the cost of memorability. And while banks are increasingly adopting systemgenerated PINs, the impact on memorability of such PINs has not been studied. We conducted a large-scale online user study with 9,114 participants to investigate the impact of increased PIN length on the memorability of PINs, and whether number chunking 1 techniques (breaking a single number into multiple smaller numbers) can be applied to improve memorability for larger PIN lengths. As one would expect, our study shows that system-generated 4-digit PINs outperform 6-, 7-, and 8-digit PINs in long-term memorability. Interestingly, however, we find that there is no statistically significant difference in memorability between 6-, 7-, and 8-digit PINs, indicating that 7-, and 8-digit PINs should also be considered when looking to increase PIN length to 6-digits from currently common length of 4-digits for improved security. By grouping all 6-, 7-, and 8-digit chunked PINs together, and comparing them against a group of all non-chunked PINs, we find that chunking, overall, improves memorability of system-generated PINs. To our surprise, however, none of the individual chunking policies (e.g., 0000-00-00) showed statistically significant improvement over their peer non� Part of this work was done while Dr. Huh and Dr. Bobba were at the University of Illinois. 1 Note that our notion of chunking differs from the traditional notion in that we do not chunk numbers into semantically meaningful pieces.