{"title":"基于smt的可调度性分析","authors":"A. Pedro, David Pereira, L. M. Pinho, J. Pinto","doi":"10.1145/3166227.3166234","DOIUrl":null,"url":null,"abstract":"Several methods have been proposed for performing schedulability analysis for both uni-processor and multi-processor real-time systems. Very few of these works use the power of formal logic to write unambiguous specifications and to allow the usage of theorem provers for building the proofs of interest with greater correctness guarantees. In this paper we address this challenge by: 1) defining a formal language that allows to specify periodic resource models; 2) describe a transformational approach to reasoning about timing properties of resource models by transforming the latter specifications into a satisfiability modulo theories problem.","PeriodicalId":447904,"journal":{"name":"SIGBED Rev.","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"SMT-based schedulability analysis using RMTL-∫\",\"authors\":\"A. Pedro, David Pereira, L. M. Pinho, J. Pinto\",\"doi\":\"10.1145/3166227.3166234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several methods have been proposed for performing schedulability analysis for both uni-processor and multi-processor real-time systems. Very few of these works use the power of formal logic to write unambiguous specifications and to allow the usage of theorem provers for building the proofs of interest with greater correctness guarantees. In this paper we address this challenge by: 1) defining a formal language that allows to specify periodic resource models; 2) describe a transformational approach to reasoning about timing properties of resource models by transforming the latter specifications into a satisfiability modulo theories problem.\",\"PeriodicalId\":447904,\"journal\":{\"name\":\"SIGBED Rev.\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGBED Rev.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3166227.3166234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGBED Rev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3166227.3166234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Several methods have been proposed for performing schedulability analysis for both uni-processor and multi-processor real-time systems. Very few of these works use the power of formal logic to write unambiguous specifications and to allow the usage of theorem provers for building the proofs of interest with greater correctness guarantees. In this paper we address this challenge by: 1) defining a formal language that allows to specify periodic resource models; 2) describe a transformational approach to reasoning about timing properties of resource models by transforming the latter specifications into a satisfiability modulo theories problem.