一种快速收敛的宽带MIMO-OFDM系统自适应稀疏信道估计算法

A. Beena, S. Pillai, N. Vijayakumar
{"title":"一种快速收敛的宽带MIMO-OFDM系统自适应稀疏信道估计算法","authors":"A. Beena, S. Pillai, N. Vijayakumar","doi":"10.1109/ICCS1.2017.8325980","DOIUrl":null,"url":null,"abstract":"Accurate channel state information estimation in a time variant environment is a significant problem in Multi-Input Multi-Output (MIMO) — Orthogonal Frequency Division Multiplexing (OFDM) systems. Generally channel coefficients of a time variant wireless channel are obtained using Adaptive Channel Estimation (ACE) algorithms. One of the simple and stable ACE methods is based on the Normalized Least Mean Square (NLMS) algorithm. But, it cannot make use of the intrinsic sparsity of broadband MIMO wireless channel. This paper proposes a Variable Step Size-Sign Data Sign-Error Normalized Least Mean Square (VSS-SDSENLMS) algorithm for Adaptive Sparse Channel Estimation (ASCE) which is based on the application of sparse penalties to the cost function of SDSENLMS algorithm.","PeriodicalId":367360,"journal":{"name":"2017 IEEE International Conference on Circuits and Systems (ICCS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Adaptive Sparse Channel Estimation algorithm with fast convergence for broad band MIMO-OFDM systems\",\"authors\":\"A. Beena, S. Pillai, N. Vijayakumar\",\"doi\":\"10.1109/ICCS1.2017.8325980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate channel state information estimation in a time variant environment is a significant problem in Multi-Input Multi-Output (MIMO) — Orthogonal Frequency Division Multiplexing (OFDM) systems. Generally channel coefficients of a time variant wireless channel are obtained using Adaptive Channel Estimation (ACE) algorithms. One of the simple and stable ACE methods is based on the Normalized Least Mean Square (NLMS) algorithm. But, it cannot make use of the intrinsic sparsity of broadband MIMO wireless channel. This paper proposes a Variable Step Size-Sign Data Sign-Error Normalized Least Mean Square (VSS-SDSENLMS) algorithm for Adaptive Sparse Channel Estimation (ASCE) which is based on the application of sparse penalties to the cost function of SDSENLMS algorithm.\",\"PeriodicalId\":367360,\"journal\":{\"name\":\"2017 IEEE International Conference on Circuits and Systems (ICCS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Circuits and Systems (ICCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCS1.2017.8325980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Circuits and Systems (ICCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCS1.2017.8325980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在多输入多输出(MIMO) -正交频分复用(OFDM)系统中,时变环境下信道状态信息的准确估计是一个重要问题。时变无线信道的信道系数一般采用自适应信道估计(ACE)算法。一种简单而稳定的ACE方法是基于归一化最小均方(NLMS)算法。但是,它不能充分利用宽带MIMO无线信道固有的稀疏性。基于对SDSENLMS算法的代价函数进行稀疏惩罚,提出了一种可变步长-符号-数据符号-误差归一化最小均方(VSS-SDSENLMS)自适应稀疏信道估计算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Adaptive Sparse Channel Estimation algorithm with fast convergence for broad band MIMO-OFDM systems
Accurate channel state information estimation in a time variant environment is a significant problem in Multi-Input Multi-Output (MIMO) — Orthogonal Frequency Division Multiplexing (OFDM) systems. Generally channel coefficients of a time variant wireless channel are obtained using Adaptive Channel Estimation (ACE) algorithms. One of the simple and stable ACE methods is based on the Normalized Least Mean Square (NLMS) algorithm. But, it cannot make use of the intrinsic sparsity of broadband MIMO wireless channel. This paper proposes a Variable Step Size-Sign Data Sign-Error Normalized Least Mean Square (VSS-SDSENLMS) algorithm for Adaptive Sparse Channel Estimation (ASCE) which is based on the application of sparse penalties to the cost function of SDSENLMS algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Screen content coding using code repository for compound image compression Survey of data and storage security in cloud computing ORBOT — An efficient & intelligent mono copter Design of multiband microstrip patch antenna for IOT applications Arc-shaped cantilever beam RF MEMS switch for low actuation voltage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1