{"title":"以聚乙烯醇(PVA)为栅极介质,采用气溶胶喷射打印技术完全打印出柔性碳纳米管晶体管","authors":"B. Mishra, C. Howlader, Yihong Chen","doi":"10.1117/12.2633716","DOIUrl":null,"url":null,"abstract":"The availability of printable dielectric materials and their printability is one of the major roadblocks to printed flexible electronics. Here, we report the performance of fully printed field-effect transistors using polyvinyl alcohol (PVA) as dielectric and carbon nanotube (CNT) as a semiconducting layer. As fewer numbers of research are available on printed PVA films, here we investigate ink formulation and printing parameters for PVA and their effects on device performances. Aerosol jet Printer was used to obtain a highly dense CNT network and pinhole-free thin PVA dielectric layer that resulted in a high on/off ratio and drain current. This completely printed transistor with polymer dielectric will be a great contribution to flexible electronic devices.","PeriodicalId":145218,"journal":{"name":"Organic Photonics + Electronics","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Completely printed flexible carbon nanotube based transistor using poly-vinyl alcohol (PVA) as gate dielectric via aerosol jet printing\",\"authors\":\"B. Mishra, C. Howlader, Yihong Chen\",\"doi\":\"10.1117/12.2633716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The availability of printable dielectric materials and their printability is one of the major roadblocks to printed flexible electronics. Here, we report the performance of fully printed field-effect transistors using polyvinyl alcohol (PVA) as dielectric and carbon nanotube (CNT) as a semiconducting layer. As fewer numbers of research are available on printed PVA films, here we investigate ink formulation and printing parameters for PVA and their effects on device performances. Aerosol jet Printer was used to obtain a highly dense CNT network and pinhole-free thin PVA dielectric layer that resulted in a high on/off ratio and drain current. This completely printed transistor with polymer dielectric will be a great contribution to flexible electronic devices.\",\"PeriodicalId\":145218,\"journal\":{\"name\":\"Organic Photonics + Electronics\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Photonics + Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2633716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Photonics + Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2633716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Completely printed flexible carbon nanotube based transistor using poly-vinyl alcohol (PVA) as gate dielectric via aerosol jet printing
The availability of printable dielectric materials and their printability is one of the major roadblocks to printed flexible electronics. Here, we report the performance of fully printed field-effect transistors using polyvinyl alcohol (PVA) as dielectric and carbon nanotube (CNT) as a semiconducting layer. As fewer numbers of research are available on printed PVA films, here we investigate ink formulation and printing parameters for PVA and their effects on device performances. Aerosol jet Printer was used to obtain a highly dense CNT network and pinhole-free thin PVA dielectric layer that resulted in a high on/off ratio and drain current. This completely printed transistor with polymer dielectric will be a great contribution to flexible electronic devices.