{"title":"基于i向量的说话人神经网络声学模型自适应","authors":"G. Saon, H. Soltau, D. Nahamoo, M. Picheny","doi":"10.1109/ASRU.2013.6707705","DOIUrl":null,"url":null,"abstract":"We propose to adapt deep neural network (DNN) acoustic models to a target speaker by supplying speaker identity vectors (i-vectors) as input features to the network in parallel with the regular acoustic features for ASR. For both training and test, the i-vector for a given speaker is concatenated to every frame belonging to that speaker and changes across different speakers. Experimental results on a Switchboard 300 hours corpus show that DNNs trained on speaker independent features and i-vectors achieve a 10% relative improvement in word error rate (WER) over networks trained on speaker independent features only. These networks are comparable in performance to DNNs trained on speaker-adapted features (with VTLN and FMLLR) with the advantage that only one decoding pass is needed. Furthermore, networks trained on speaker-adapted features and i-vectors achieve a 5-6% relative improvement in WER after hessian-free sequence training over networks trained on speaker-adapted features only.","PeriodicalId":265258,"journal":{"name":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"650","resultStr":"{\"title\":\"Speaker adaptation of neural network acoustic models using i-vectors\",\"authors\":\"G. Saon, H. Soltau, D. Nahamoo, M. Picheny\",\"doi\":\"10.1109/ASRU.2013.6707705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose to adapt deep neural network (DNN) acoustic models to a target speaker by supplying speaker identity vectors (i-vectors) as input features to the network in parallel with the regular acoustic features for ASR. For both training and test, the i-vector for a given speaker is concatenated to every frame belonging to that speaker and changes across different speakers. Experimental results on a Switchboard 300 hours corpus show that DNNs trained on speaker independent features and i-vectors achieve a 10% relative improvement in word error rate (WER) over networks trained on speaker independent features only. These networks are comparable in performance to DNNs trained on speaker-adapted features (with VTLN and FMLLR) with the advantage that only one decoding pass is needed. Furthermore, networks trained on speaker-adapted features and i-vectors achieve a 5-6% relative improvement in WER after hessian-free sequence training over networks trained on speaker-adapted features only.\",\"PeriodicalId\":265258,\"journal\":{\"name\":\"2013 IEEE Workshop on Automatic Speech Recognition and Understanding\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"650\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Workshop on Automatic Speech Recognition and Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2013.6707705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2013.6707705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Speaker adaptation of neural network acoustic models using i-vectors
We propose to adapt deep neural network (DNN) acoustic models to a target speaker by supplying speaker identity vectors (i-vectors) as input features to the network in parallel with the regular acoustic features for ASR. For both training and test, the i-vector for a given speaker is concatenated to every frame belonging to that speaker and changes across different speakers. Experimental results on a Switchboard 300 hours corpus show that DNNs trained on speaker independent features and i-vectors achieve a 10% relative improvement in word error rate (WER) over networks trained on speaker independent features only. These networks are comparable in performance to DNNs trained on speaker-adapted features (with VTLN and FMLLR) with the advantage that only one decoding pass is needed. Furthermore, networks trained on speaker-adapted features and i-vectors achieve a 5-6% relative improvement in WER after hessian-free sequence training over networks trained on speaker-adapted features only.