P. Orlowski, J. Noble, Y. Ventikos, J. Byrne, P. Summers
{"title":"基于图像的脑动静脉畸形血流动力学模拟","authors":"P. Orlowski, J. Noble, Y. Ventikos, J. Byrne, P. Summers","doi":"10.1109/ISBI.2008.4541086","DOIUrl":null,"url":null,"abstract":"A novel image-based patient-specific simulation method has been developed incorporating computational fluid dynamics (CFD) and porous media principles which presents, for the first time, patient-specific blood flow through an arteriovenous malformation of the brain (BAVM). The new approach constructs an image-based geometric model of a malformation where the BAVM nidus is modelled as a porous medium. The method has been applied to a brain BAVM case with two feeding and four draining vessels. A qualitative comparison of the simulation results with blood flow imaging data shows the promise of the approach and suggests that the method may find application in planning for BAVM treatment.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Image-based simulation of brain arteriovenous malformation hemodynamics\",\"authors\":\"P. Orlowski, J. Noble, Y. Ventikos, J. Byrne, P. Summers\",\"doi\":\"10.1109/ISBI.2008.4541086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel image-based patient-specific simulation method has been developed incorporating computational fluid dynamics (CFD) and porous media principles which presents, for the first time, patient-specific blood flow through an arteriovenous malformation of the brain (BAVM). The new approach constructs an image-based geometric model of a malformation where the BAVM nidus is modelled as a porous medium. The method has been applied to a brain BAVM case with two feeding and four draining vessels. A qualitative comparison of the simulation results with blood flow imaging data shows the promise of the approach and suggests that the method may find application in planning for BAVM treatment.\",\"PeriodicalId\":184204,\"journal\":{\"name\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2008.4541086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Image-based simulation of brain arteriovenous malformation hemodynamics
A novel image-based patient-specific simulation method has been developed incorporating computational fluid dynamics (CFD) and porous media principles which presents, for the first time, patient-specific blood flow through an arteriovenous malformation of the brain (BAVM). The new approach constructs an image-based geometric model of a malformation where the BAVM nidus is modelled as a porous medium. The method has been applied to a brain BAVM case with two feeding and four draining vessels. A qualitative comparison of the simulation results with blood flow imaging data shows the promise of the approach and suggests that the method may find application in planning for BAVM treatment.