使用mT5变压器的多语种印度语神经机器翻译系统

Abhinav Jha, H. Patil, S. Jindal, Sardar M N Islam
{"title":"使用mT5变压器的多语种印度语神经机器翻译系统","authors":"Abhinav Jha, H. Patil, S. Jindal, Sardar M N Islam","doi":"10.1109/PCEMS58491.2023.10136051","DOIUrl":null,"url":null,"abstract":"This paper demonstrates the development and evaluation of a multilingual neural machine translation system for Indian languages based on the mT5 transformer, successfully utilized to develop multiple state-of-the-art NLP models. We used the modified Asian Language Treebank multilingual dataset to train the system for developing a Machine Translation model capable of translating text in English, Hindi and Bengali amongst each other. Our system was able to achieve acceptable BLEU scores of over 20 in five of the six language pairs, with the English to Bengali system achieving a maximum BLEU score of 49.87 and the Bengali to English system achieving an average BLEU score of 42.43.","PeriodicalId":330870,"journal":{"name":"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)","volume":"169 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multilingual Indian Language Neural Machine Translation System Using mT5 Transformer\",\"authors\":\"Abhinav Jha, H. Patil, S. Jindal, Sardar M N Islam\",\"doi\":\"10.1109/PCEMS58491.2023.10136051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates the development and evaluation of a multilingual neural machine translation system for Indian languages based on the mT5 transformer, successfully utilized to develop multiple state-of-the-art NLP models. We used the modified Asian Language Treebank multilingual dataset to train the system for developing a Machine Translation model capable of translating text in English, Hindi and Bengali amongst each other. Our system was able to achieve acceptable BLEU scores of over 20 in five of the six language pairs, with the English to Bengali system achieving a maximum BLEU score of 49.87 and the Bengali to English system achieving an average BLEU score of 42.43.\",\"PeriodicalId\":330870,\"journal\":{\"name\":\"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)\",\"volume\":\"169 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCEMS58491.2023.10136051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCEMS58491.2023.10136051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文展示了基于mT5转换器的印度语言多语言神经机器翻译系统的开发和评估,并成功地用于开发多个最先进的NLP模型。我们使用修改后的亚洲语言树库多语言数据集来训练系统,以开发能够在英语,印地语和孟加拉语之间相互翻译文本的机器翻译模型。我们的系统能够在六个语言对中的五个中获得超过20分的可接受的BLEU分数,其中英语到孟加拉语系统的BLEU分数最高为49.87分,孟加拉语到英语系统的BLEU分数平均为42.43分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multilingual Indian Language Neural Machine Translation System Using mT5 Transformer
This paper demonstrates the development and evaluation of a multilingual neural machine translation system for Indian languages based on the mT5 transformer, successfully utilized to develop multiple state-of-the-art NLP models. We used the modified Asian Language Treebank multilingual dataset to train the system for developing a Machine Translation model capable of translating text in English, Hindi and Bengali amongst each other. Our system was able to achieve acceptable BLEU scores of over 20 in five of the six language pairs, with the English to Bengali system achieving a maximum BLEU score of 49.87 and the Bengali to English system achieving an average BLEU score of 42.43.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interactive Zira Voice Assistant- A Personalized Desktop Application Gait-Face Based Human Recognition From Distant Video Survey on Diverse Image Inpainting using Diffusion Models Survey, Analysis and Association Rules derivation using Apriori Method for buying preference amongst kids of age-group 5 to 9 in India Implementing Chaos Based Optimisations on Neural Networks for Predictions of Distributed Denial-of-Service (DDoS) Attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1