基于状态面分析和$\Sigma\Delta$坐标变换的模块化多电平变换器建模

Yi-Hsun Hsieh, F. Lee
{"title":"基于状态面分析和$\\Sigma\\Delta$坐标变换的模块化多电平变换器建模","authors":"Yi-Hsun Hsieh, F. Lee","doi":"10.1109/EPEPEMC.2018.8521988","DOIUrl":null,"url":null,"abstract":"Because of its simple modular structure and easy voltage scaling, the modular multilevel converter (MMC) is deemed the most suitable for high-voltage power conversion using relatively low-voltage devices. In most practices, the volume of the capacitors is more than 50% of the total module size. Hence, methods of reducing circulating energy and the size of the capacitor bank have been widely pursued. Even though a significant progress has been made toward reducing the capacitor voltage ripple, there is a lack of an effective modeling tool that enables a more systemic approach to address control strategies for system optimization. This paper proposes a method of modeling and control based on the state trajectory analysis and offers graphical visualization of the power throughput and circulating energy. Furthermore, through a coordinate transformation, a simple equivalent circuit model is developed leading to the establishment of the two control laws that enable maximum power throughput with minimum circulating energy.","PeriodicalId":251046,"journal":{"name":"2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling of the Modular Multilevel Converters Based on the State-Plane Analysis and $\\\\Sigma\\\\Delta$ Coordinate Transformation\",\"authors\":\"Yi-Hsun Hsieh, F. Lee\",\"doi\":\"10.1109/EPEPEMC.2018.8521988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because of its simple modular structure and easy voltage scaling, the modular multilevel converter (MMC) is deemed the most suitable for high-voltage power conversion using relatively low-voltage devices. In most practices, the volume of the capacitors is more than 50% of the total module size. Hence, methods of reducing circulating energy and the size of the capacitor bank have been widely pursued. Even though a significant progress has been made toward reducing the capacitor voltage ripple, there is a lack of an effective modeling tool that enables a more systemic approach to address control strategies for system optimization. This paper proposes a method of modeling and control based on the state trajectory analysis and offers graphical visualization of the power throughput and circulating energy. Furthermore, through a coordinate transformation, a simple equivalent circuit model is developed leading to the establishment of the two control laws that enable maximum power throughput with minimum circulating energy.\",\"PeriodicalId\":251046,\"journal\":{\"name\":\"2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEPEMC.2018.8521988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPEMC.2018.8521988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

模块化多电平转换器(MMC)由于其模块化结构简单,易于电压缩放,被认为是最适合使用相对低压器件进行高压功率转换的器件。在大多数实践中,电容器的体积大于模块总尺寸的50%。因此,减少循环能量和电容器组尺寸的方法已被广泛追求。尽管在减少电容器电压纹波方面已经取得了重大进展,但缺乏有效的建模工具,无法采用更系统的方法来解决系统优化的控制策略。本文提出了一种基于状态轨迹分析的建模和控制方法,并提供了功率吞吐量和循环能量的图形可视化。通过坐标变换,建立了简单的等效电路模型,从而建立了以最小循环能量实现最大功率吞吐量的两个控制律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling of the Modular Multilevel Converters Based on the State-Plane Analysis and $\Sigma\Delta$ Coordinate Transformation
Because of its simple modular structure and easy voltage scaling, the modular multilevel converter (MMC) is deemed the most suitable for high-voltage power conversion using relatively low-voltage devices. In most practices, the volume of the capacitors is more than 50% of the total module size. Hence, methods of reducing circulating energy and the size of the capacitor bank have been widely pursued. Even though a significant progress has been made toward reducing the capacitor voltage ripple, there is a lack of an effective modeling tool that enables a more systemic approach to address control strategies for system optimization. This paper proposes a method of modeling and control based on the state trajectory analysis and offers graphical visualization of the power throughput and circulating energy. Furthermore, through a coordinate transformation, a simple equivalent circuit model is developed leading to the establishment of the two control laws that enable maximum power throughput with minimum circulating energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Active Hybrid Filter Applied with a Multi-Cell Switch-Mode Power Amplifier Nonlinear MIMO Control of Interleaved Three-Port Boost Converter by Means of State-Feedback Linearization Voltage Stability Improvement by Using a Newly Designed STATCOM Controller in Case of High Wind Penetration Cases Soft-Switching Converter Based on Primary Series Connection and Single Transformer Design and Analysis of a Two-Phase Interleaved Boost Converter Based Microinverter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1