{"title":"演化混沌神经系统用于时间序列预测","authors":"Dong-Wook Lee, K. Sim","doi":"10.1109/CEC.1999.781941","DOIUrl":null,"url":null,"abstract":"We present a new type of neural architecture consisting of chaotic neurons and apply it to the prediction of chaotic time series signals. To evolve chaotic neural systems, we use cellular automata whose production rules are evolved based on a DNA coding method. The structure of networks are appropriate for learning nonlinear, chaotic, and nonstationary systems. In order to verify their effectiveness, we apply the evolutionary chaotic neural systems to one-step ahead prediction of Mackey-Glass time series data.","PeriodicalId":292523,"journal":{"name":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Evolving chaotic neural systems for time series prediction\",\"authors\":\"Dong-Wook Lee, K. Sim\",\"doi\":\"10.1109/CEC.1999.781941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new type of neural architecture consisting of chaotic neurons and apply it to the prediction of chaotic time series signals. To evolve chaotic neural systems, we use cellular automata whose production rules are evolved based on a DNA coding method. The structure of networks are appropriate for learning nonlinear, chaotic, and nonstationary systems. In order to verify their effectiveness, we apply the evolutionary chaotic neural systems to one-step ahead prediction of Mackey-Glass time series data.\",\"PeriodicalId\":292523,\"journal\":{\"name\":\"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.1999.781941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.1999.781941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evolving chaotic neural systems for time series prediction
We present a new type of neural architecture consisting of chaotic neurons and apply it to the prediction of chaotic time series signals. To evolve chaotic neural systems, we use cellular automata whose production rules are evolved based on a DNA coding method. The structure of networks are appropriate for learning nonlinear, chaotic, and nonstationary systems. In order to verify their effectiveness, we apply the evolutionary chaotic neural systems to one-step ahead prediction of Mackey-Glass time series data.