基于参数相关李雅普诺夫矩阵的部分增益调度控制器

Gan Chen
{"title":"基于参数相关李雅普诺夫矩阵的部分增益调度控制器","authors":"Gan Chen","doi":"10.1109/ANZCC.2017.8298497","DOIUrl":null,"url":null,"abstract":"It is well known that the gain scheduled controller is effective for parameter-varying systems. By using parameter dependent Lyapunov matrix, the performance of the gain scheduled controller is significant. However, the controller gain is calculated by using the inverse of the Lyapunov matrix in ordinary linear matrix inequality framework. When the parameter dependent Lyapunov matrix is applied, the real-time computational burden for the inverse of the parameter dependent Lyapunov matrix cannot be ignored. In this paper, we propose a partly gain scheduled controller synthesis that requires less computational burden for the inverse of parameter dependent matrix. We choose sub-state variables to apply gain scheduling and synthesize a gain scheduling controller for the subsystem. It allows using a lower order parameter dependent matrix in the online calculation. After applying the local gain scheduling controller, we synthesize full state static feedback gain to stabilize the total system by using a parameter dependent Lyapunov matrix. By using a parameter dependent Lyapunov matrix to synthesize the static gain, we expect to reduce some conservativeness.","PeriodicalId":429208,"journal":{"name":"2017 Australian and New Zealand Control Conference (ANZCC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partly gain scheduled controller based on parameter dependent Lyapunov matrix\",\"authors\":\"Gan Chen\",\"doi\":\"10.1109/ANZCC.2017.8298497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that the gain scheduled controller is effective for parameter-varying systems. By using parameter dependent Lyapunov matrix, the performance of the gain scheduled controller is significant. However, the controller gain is calculated by using the inverse of the Lyapunov matrix in ordinary linear matrix inequality framework. When the parameter dependent Lyapunov matrix is applied, the real-time computational burden for the inverse of the parameter dependent Lyapunov matrix cannot be ignored. In this paper, we propose a partly gain scheduled controller synthesis that requires less computational burden for the inverse of parameter dependent matrix. We choose sub-state variables to apply gain scheduling and synthesize a gain scheduling controller for the subsystem. It allows using a lower order parameter dependent matrix in the online calculation. After applying the local gain scheduling controller, we synthesize full state static feedback gain to stabilize the total system by using a parameter dependent Lyapunov matrix. By using a parameter dependent Lyapunov matrix to synthesize the static gain, we expect to reduce some conservativeness.\",\"PeriodicalId\":429208,\"journal\":{\"name\":\"2017 Australian and New Zealand Control Conference (ANZCC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Australian and New Zealand Control Conference (ANZCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANZCC.2017.8298497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Australian and New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZCC.2017.8298497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

增益预定控制器对于变参数系统是有效的。利用参数相关的李雅普诺夫矩阵,提高了增益调度控制器的性能。然而,控制器增益是通过在普通线性矩阵不等式框架中使用李雅普诺夫矩阵的逆来计算的。当应用参数相关Lyapunov矩阵时,参数相关Lyapunov矩阵逆的实时计算量不容忽视。本文提出了一种部分增益调度控制器综合方法,该方法对参数相关矩阵逆的计算量较小。我们选择子状态变量应用增益调度,并为子系统合成增益调度控制器。它允许在在线计算中使用低阶参数相关矩阵。在应用局部增益调度控制器后,利用参数相关李雅普诺夫矩阵合成全状态静态反馈增益以稳定整个系统。通过使用参数相关的李雅普诺夫矩阵来合成静态增益,我们期望降低一些保守性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Partly gain scheduled controller based on parameter dependent Lyapunov matrix
It is well known that the gain scheduled controller is effective for parameter-varying systems. By using parameter dependent Lyapunov matrix, the performance of the gain scheduled controller is significant. However, the controller gain is calculated by using the inverse of the Lyapunov matrix in ordinary linear matrix inequality framework. When the parameter dependent Lyapunov matrix is applied, the real-time computational burden for the inverse of the parameter dependent Lyapunov matrix cannot be ignored. In this paper, we propose a partly gain scheduled controller synthesis that requires less computational burden for the inverse of parameter dependent matrix. We choose sub-state variables to apply gain scheduling and synthesize a gain scheduling controller for the subsystem. It allows using a lower order parameter dependent matrix in the online calculation. After applying the local gain scheduling controller, we synthesize full state static feedback gain to stabilize the total system by using a parameter dependent Lyapunov matrix. By using a parameter dependent Lyapunov matrix to synthesize the static gain, we expect to reduce some conservativeness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Finite-time boundedness of uncertain Markovian jump systems: A sliding mode approach Effects of actuator dynamics on disturbance rejection for small multi-rotor UAS Coexistence for industrial wireless communication systems in the context of industrie 4.0 Quadrotor helicopters trajectory tracking with stochastic model predictive control Functional observer design for linear discrete-time stochastic system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1