{"title":"数字图像星座识别","authors":"Zsuzsanna Molnár, Dániel Kiss","doi":"10.1109/SACI58269.2023.10158564","DOIUrl":null,"url":null,"abstract":"In this paper, we present an optimization-based approach for star constellation recognition. The main components of the proposed procedure are the processing of digital images and the minimization of the error in point cloud matching by parameter optimization. In the optimization phase, the Nelder– Mead algorithm, the simulated annealing algorithm, and an evolutionary algorithm were used. Also, the behavior of these methods is evaluated and compared in the paper based on their average error values for different test images. Results on our test dataset showed that the Nelder–Mead simplex algorithm was performing the best in solving the recognition task.","PeriodicalId":339156,"journal":{"name":"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constellation Recognition on Digital Images\",\"authors\":\"Zsuzsanna Molnár, Dániel Kiss\",\"doi\":\"10.1109/SACI58269.2023.10158564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an optimization-based approach for star constellation recognition. The main components of the proposed procedure are the processing of digital images and the minimization of the error in point cloud matching by parameter optimization. In the optimization phase, the Nelder– Mead algorithm, the simulated annealing algorithm, and an evolutionary algorithm were used. Also, the behavior of these methods is evaluated and compared in the paper based on their average error values for different test images. Results on our test dataset showed that the Nelder–Mead simplex algorithm was performing the best in solving the recognition task.\",\"PeriodicalId\":339156,\"journal\":{\"name\":\"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI58269.2023.10158564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI58269.2023.10158564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于优化的星群识别方法。该方法的主要组成部分是数字图像的处理和通过参数优化使点云匹配误差最小化。在优化阶段,采用了Nelder - Mead算法、模拟退火算法和进化算法。此外,本文还对这些方法在不同测试图像下的平均误差值进行了评价和比较。在我们的测试数据集上的结果表明,Nelder-Mead单纯形算法在解决识别任务方面表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Constellation Recognition on Digital Images
In this paper, we present an optimization-based approach for star constellation recognition. The main components of the proposed procedure are the processing of digital images and the minimization of the error in point cloud matching by parameter optimization. In the optimization phase, the Nelder– Mead algorithm, the simulated annealing algorithm, and an evolutionary algorithm were used. Also, the behavior of these methods is evaluated and compared in the paper based on their average error values for different test images. Results on our test dataset showed that the Nelder–Mead simplex algorithm was performing the best in solving the recognition task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of 3D multi-user software tools in digital medicine – a scoping review Machine Learning in Heat Transfer: Taxonomy, Review and Evaluation Auction-Based Job Scheduling for Smart Manufacturing Safe trajectory design for indoor drones using reinforcement-learning-based methods Investigation of reward functions for controlling blood glucose level using reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1