Grote:保护隐私的人脸识别组测试

Alberto Ibarrondo, H. Chabanne, V. Despiegel, Melek Önen
{"title":"Grote:保护隐私的人脸识别组测试","authors":"Alberto Ibarrondo, H. Chabanne, V. Despiegel, Melek Önen","doi":"10.1145/3577923.3583656","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel method to perform privacy-preserving face identification based on the notion of group testing, and applies it to a solution using the Cheon-Kim-Kim-Song (CKKS) homomorphic encryption scheme. Securely computing the closest reference template to a given live template requires K comparisons, as many as there are identities in a biometric database. Our solution, named Grote, replaces element-wise testing by group testing to drastically reduce the number of such costly, non-linear operations in the encrypted domain from K to up to 2\\sqrtK . More specifically, we approximate the max of the coordinates of a large vector by raising to the α-th power and cumulative sum in a 2D layout, incurring a small impact in the accuracy of the system while greatly speeding up its execution. We implement Grote and evaluate its performance.","PeriodicalId":387479,"journal":{"name":"Proceedings of the Thirteenth ACM Conference on Data and Application Security and Privacy","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Grote: Group Testing for Privacy-Preserving Face Identification\",\"authors\":\"Alberto Ibarrondo, H. Chabanne, V. Despiegel, Melek Önen\",\"doi\":\"10.1145/3577923.3583656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel method to perform privacy-preserving face identification based on the notion of group testing, and applies it to a solution using the Cheon-Kim-Kim-Song (CKKS) homomorphic encryption scheme. Securely computing the closest reference template to a given live template requires K comparisons, as many as there are identities in a biometric database. Our solution, named Grote, replaces element-wise testing by group testing to drastically reduce the number of such costly, non-linear operations in the encrypted domain from K to up to 2\\\\sqrtK . More specifically, we approximate the max of the coordinates of a large vector by raising to the α-th power and cumulative sum in a 2D layout, incurring a small impact in the accuracy of the system while greatly speeding up its execution. We implement Grote and evaluate its performance.\",\"PeriodicalId\":387479,\"journal\":{\"name\":\"Proceedings of the Thirteenth ACM Conference on Data and Application Security and Privacy\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Thirteenth ACM Conference on Data and Application Security and Privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3577923.3583656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Thirteenth ACM Conference on Data and Application Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577923.3583656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于群测试的人脸识别方法,并将其应用于CKKS (Cheon-Kim-Kim-Song)同态加密方案。安全地计算与给定活动模板最接近的参考模板需要K次比较,与生物识别数据库中的身份一样多。我们的解决方案,名为Grote,用组测试取代了元素测试,从而大大减少了加密域中这种昂贵的非线性操作的数量,从K到最多2\sqrtK。更具体地说,我们通过提高到二维布局中的α-次幂和累积和来近似大矢量坐标的最大值,这对系统的精度产生了很小的影响,同时大大加快了其执行速度。我们实现Grote并评估其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Grote: Group Testing for Privacy-Preserving Face Identification
This paper proposes a novel method to perform privacy-preserving face identification based on the notion of group testing, and applies it to a solution using the Cheon-Kim-Kim-Song (CKKS) homomorphic encryption scheme. Securely computing the closest reference template to a given live template requires K comparisons, as many as there are identities in a biometric database. Our solution, named Grote, replaces element-wise testing by group testing to drastically reduce the number of such costly, non-linear operations in the encrypted domain from K to up to 2\sqrtK . More specifically, we approximate the max of the coordinates of a large vector by raising to the α-th power and cumulative sum in a 2D layout, incurring a small impact in the accuracy of the system while greatly speeding up its execution. We implement Grote and evaluate its performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tackling Credential Abuse Together Comparative Privacy Analysis of Mobile Browsers Confidential Execution of Deep Learning Inference at the Untrusted Edge with ARM TrustZone Local Methods for Privacy Protection and Impact on Fairness Role Models: Role-based Debloating for Web Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1