高通量视觉分析生物科学:将数据转化为知识

C. Oehmen, L. McCue, J. Adkins, K. Waters, Tim Carlson, W. Cannon, B. Webb-Robertson, Douglas J. Baxter, Elena S. Peterson, M. Singhal, A. Shah, Kyle R. Klicker
{"title":"高通量视觉分析生物科学:将数据转化为知识","authors":"C. Oehmen, L. McCue, J. Adkins, K. Waters, Tim Carlson, W. Cannon, B. Webb-Robertson, Douglas J. Baxter, Elena S. Peterson, M. Singhal, A. Shah, Kyle R. Klicker","doi":"10.1145/1188455.1188769","DOIUrl":null,"url":null,"abstract":"For the SC|06 analytics challenge, we demonstrate an end-to-end solution for processing data produced by high-throughput mass spectrometry (MS)-based proteomics so biological hypotheses can be explored. This approach is based on a tool called the Bioinformatics Resource Manager (BRM) which will interact with high-performance architecture and experimental data sources to provide high-throughput analytics to a specific experimental dataset. Peptide identification was achieved by a high-performance code, Polygraph, which has been shown to scale well beyond 1000 processors. Visual analytics applications such as PQuad, Cytoscape, or others may be used to visualize protein identities in the context of pathways using data from public repositories such as Kyoto Encyclopedia of Genes and Genomes (KEGG). The end result was that a user can go from experimental spectra to pathway data in a single workflow reducing time-to-solution for analyzing biological data from weeks to minutes.","PeriodicalId":115940,"journal":{"name":"Proceedings of the 2006 ACM/IEEE conference on Supercomputing","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-throughput visual analytics biological sciences: turning data into knowledge\",\"authors\":\"C. Oehmen, L. McCue, J. Adkins, K. Waters, Tim Carlson, W. Cannon, B. Webb-Robertson, Douglas J. Baxter, Elena S. Peterson, M. Singhal, A. Shah, Kyle R. Klicker\",\"doi\":\"10.1145/1188455.1188769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the SC|06 analytics challenge, we demonstrate an end-to-end solution for processing data produced by high-throughput mass spectrometry (MS)-based proteomics so biological hypotheses can be explored. This approach is based on a tool called the Bioinformatics Resource Manager (BRM) which will interact with high-performance architecture and experimental data sources to provide high-throughput analytics to a specific experimental dataset. Peptide identification was achieved by a high-performance code, Polygraph, which has been shown to scale well beyond 1000 processors. Visual analytics applications such as PQuad, Cytoscape, or others may be used to visualize protein identities in the context of pathways using data from public repositories such as Kyoto Encyclopedia of Genes and Genomes (KEGG). The end result was that a user can go from experimental spectra to pathway data in a single workflow reducing time-to-solution for analyzing biological data from weeks to minutes.\",\"PeriodicalId\":115940,\"journal\":{\"name\":\"Proceedings of the 2006 ACM/IEEE conference on Supercomputing\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2006 ACM/IEEE conference on Supercomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1188455.1188769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2006 ACM/IEEE conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1188455.1188769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于SC|06分析挑战,我们展示了一个端到端解决方案,用于处理基于高通量质谱(MS)的蛋白质组学产生的数据,从而可以探索生物学假设。该方法基于一种名为生物信息学资源管理器(BRM)的工具,该工具将与高性能架构和实验数据源交互,为特定的实验数据集提供高通量分析。多肽鉴定是实现了高性能的代码,测谎,这已被证明规模远远超过1000个处理器。可视化分析应用程序,如PQuad、Cytoscape或其他应用程序,可以使用来自公共存储库(如京都基因和基因组百科全书(KEGG))的数据,在途径背景下可视化蛋白质身份。最终的结果是,用户可以在一个工作流程中从实验光谱到途径数据,将分析生物数据的时间从几周减少到几分钟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-throughput visual analytics biological sciences: turning data into knowledge
For the SC|06 analytics challenge, we demonstrate an end-to-end solution for processing data produced by high-throughput mass spectrometry (MS)-based proteomics so biological hypotheses can be explored. This approach is based on a tool called the Bioinformatics Resource Manager (BRM) which will interact with high-performance architecture and experimental data sources to provide high-throughput analytics to a specific experimental dataset. Peptide identification was achieved by a high-performance code, Polygraph, which has been shown to scale well beyond 1000 processors. Visual analytics applications such as PQuad, Cytoscape, or others may be used to visualize protein identities in the context of pathways using data from public repositories such as Kyoto Encyclopedia of Genes and Genomes (KEGG). The end result was that a user can go from experimental spectra to pathway data in a single workflow reducing time-to-solution for analyzing biological data from weeks to minutes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical inference for efficient microarchitectural and application analysis The meeting list tool - a shared application for sharing dynamic information in meetings Liquid cooling: a next generation data center strategy Performance and presentation production elements Implementing algorithms on FPGAs using high-level languages and low-level libraries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1