改进了基于深度信念网络和支持向量机的彩色场景分类系统

V. Sowmya, A. Ajay, D. Govind, K. Soman
{"title":"改进了基于深度信念网络和支持向量机的彩色场景分类系统","authors":"V. Sowmya, A. Ajay, D. Govind, K. Soman","doi":"10.1109/ICSIPA.2017.8120575","DOIUrl":null,"url":null,"abstract":"In general, the three main modules of the color scene classification systems are image decolorization, feature extraction and classification. The work presented in this paper focuses on image decolorization and classification as two stages. The first stage or objective of this paper is to improve the performance of the color scene classification system using deep belief networks (DBN) and support vector machines (SVM). Therefore, color scene classification system termed as AGMM-DBN-SVM is proposed using the existing feature extraction technique called bags of visual words (BoW) derived from the dense scale-invariant feature transform (SIFT) and adapted gaussian mixture models (AGMM). The second stage of the presented work is to combine the proposed AGMM-DBN-SVM classification models obtained for the two different image decolorization methods called rgb2gray and singular value decomposition (SVD) based color-to-grayscale image mapping techniques to significantly increase the performance of the proposed color scene classification system. The effectiveness of the proposed framework is experimented on Oliva Torralba (OT) scene dataset containing 8 different classes. The classification rate of the proposed color scene classification system applied on OT 8 scene dataset is significantly greater than the one of the existing benchmarks color scene classification system developed using AGMM and SVM.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Improved color scene classification system using deep belief networks and support vector machines\",\"authors\":\"V. Sowmya, A. Ajay, D. Govind, K. Soman\",\"doi\":\"10.1109/ICSIPA.2017.8120575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In general, the three main modules of the color scene classification systems are image decolorization, feature extraction and classification. The work presented in this paper focuses on image decolorization and classification as two stages. The first stage or objective of this paper is to improve the performance of the color scene classification system using deep belief networks (DBN) and support vector machines (SVM). Therefore, color scene classification system termed as AGMM-DBN-SVM is proposed using the existing feature extraction technique called bags of visual words (BoW) derived from the dense scale-invariant feature transform (SIFT) and adapted gaussian mixture models (AGMM). The second stage of the presented work is to combine the proposed AGMM-DBN-SVM classification models obtained for the two different image decolorization methods called rgb2gray and singular value decomposition (SVD) based color-to-grayscale image mapping techniques to significantly increase the performance of the proposed color scene classification system. The effectiveness of the proposed framework is experimented on Oliva Torralba (OT) scene dataset containing 8 different classes. The classification rate of the proposed color scene classification system applied on OT 8 scene dataset is significantly greater than the one of the existing benchmarks color scene classification system developed using AGMM and SVM.\",\"PeriodicalId\":268112,\"journal\":{\"name\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2017.8120575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

一般来说,彩色场景分类系统的三个主要模块是图像脱色、特征提取和分类。本文的工作主要集中在图像脱色和分类两个阶段。本文的第一阶段或目标是利用深度信念网络(DBN)和支持向量机(SVM)来提高彩色场景分类系统的性能。因此,利用现有的基于密集尺度不变特征变换(SIFT)和自适应高斯混合模型(AGMM)的视觉词袋(BoW)特征提取技术,提出了AGMM- dbn - svm彩色场景分类系统。第二阶段的工作是将基于rgb2gray和基于奇异值分解(SVD)的两种不同图像脱色方法得到的AGMM-DBN-SVM分类模型相结合,以显著提高所提出的彩色场景分类系统的性能。在包含8个不同类别的Oliva Torralba (OT)场景数据集上对该框架的有效性进行了实验。本文提出的色彩场景分类系统在OT 8场景数据集上的分类率显著高于现有的基于AGMM和SVM的基准色彩场景分类系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved color scene classification system using deep belief networks and support vector machines
In general, the three main modules of the color scene classification systems are image decolorization, feature extraction and classification. The work presented in this paper focuses on image decolorization and classification as two stages. The first stage or objective of this paper is to improve the performance of the color scene classification system using deep belief networks (DBN) and support vector machines (SVM). Therefore, color scene classification system termed as AGMM-DBN-SVM is proposed using the existing feature extraction technique called bags of visual words (BoW) derived from the dense scale-invariant feature transform (SIFT) and adapted gaussian mixture models (AGMM). The second stage of the presented work is to combine the proposed AGMM-DBN-SVM classification models obtained for the two different image decolorization methods called rgb2gray and singular value decomposition (SVD) based color-to-grayscale image mapping techniques to significantly increase the performance of the proposed color scene classification system. The effectiveness of the proposed framework is experimented on Oliva Torralba (OT) scene dataset containing 8 different classes. The classification rate of the proposed color scene classification system applied on OT 8 scene dataset is significantly greater than the one of the existing benchmarks color scene classification system developed using AGMM and SVM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced forensic speaker verification using multi-run ICA in the presence of environmental noise and reverberation conditions A real-time multi-class multi-object tracker using YOLOv2 Hybrid neural network and regression tree ensemble pruned by simulated annealing for virtual flow metering application Hybrid DWT and MFCC feature warping for noisy forensic speaker verification in room reverberation A deep architecture for face recognition based on multiple feature extraction techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1