{"title":"实现植入式医疗设备的电池dos保护","authors":"M. Siddiqi, C. Strydis","doi":"10.1145/3310273.3321555","DOIUrl":null,"url":null,"abstract":"Modern Implantable Medical Devices (IMDs) feature wireless connectivity, which makes them vulnerable to security attacks. Particular to IMDs is the battery Denial-of-Service attack whereby attackers aim to fully deplete the battery by occupying the IMD with continuous authentication requests. Zero-Power Defense (ZPD) based on energy harvesting is known to be an excellent protection against these attacks. This paper establishes essential design specifications for employing ZPD techniques in IMDs, offers a critical review of ZPD techniques found in literature and, subsequently, gives crucial recommendations for developing comprehensive ZPD solutions.","PeriodicalId":431860,"journal":{"name":"Proceedings of the 16th ACM International Conference on Computing Frontiers","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Towards realistic battery-DoS protection of implantable medical devices\",\"authors\":\"M. Siddiqi, C. Strydis\",\"doi\":\"10.1145/3310273.3321555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern Implantable Medical Devices (IMDs) feature wireless connectivity, which makes them vulnerable to security attacks. Particular to IMDs is the battery Denial-of-Service attack whereby attackers aim to fully deplete the battery by occupying the IMD with continuous authentication requests. Zero-Power Defense (ZPD) based on energy harvesting is known to be an excellent protection against these attacks. This paper establishes essential design specifications for employing ZPD techniques in IMDs, offers a critical review of ZPD techniques found in literature and, subsequently, gives crucial recommendations for developing comprehensive ZPD solutions.\",\"PeriodicalId\":431860,\"journal\":{\"name\":\"Proceedings of the 16th ACM International Conference on Computing Frontiers\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3310273.3321555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310273.3321555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards realistic battery-DoS protection of implantable medical devices
Modern Implantable Medical Devices (IMDs) feature wireless connectivity, which makes them vulnerable to security attacks. Particular to IMDs is the battery Denial-of-Service attack whereby attackers aim to fully deplete the battery by occupying the IMD with continuous authentication requests. Zero-Power Defense (ZPD) based on energy harvesting is known to be an excellent protection against these attacks. This paper establishes essential design specifications for employing ZPD techniques in IMDs, offers a critical review of ZPD techniques found in literature and, subsequently, gives crucial recommendations for developing comprehensive ZPD solutions.