M. Samie, G. Dragffy, A. Popescu, A. Pipe, J. Kiely
{"title":"原核生物启发系统","authors":"M. Samie, G. Dragffy, A. Popescu, A. Pipe, J. Kiely","doi":"10.1109/AHS.2009.36","DOIUrl":null,"url":null,"abstract":"This paper presents a novel bio-inspired artificial system that is based on biological prokaryotic organisms and their artificial model, and proposes a new type of fault tolerant, self-healing architecture. The system comprises of a sea of bio-inspired cells, arranged in a rectangular array with a topology that is similar to that employed by FPGAs. A key feature of the array is its high level of fault tolerance, achieved with only minimal amount of hardware overhead. Inspired by similar biological processes, the technique is based on direct-correlated redundancy, where the redundant (stand-by) configuration bits, as extrinsic experience, are shared between blocks and cells of a colony in the artificial system. Bio-inspired array implementation is particularly advantageous in applications where the system is subject to extreme environmental conditions such as temperature, radiation, SEU (Single Event Upset) etc. and where fault tolerance is of particular importance.","PeriodicalId":318989,"journal":{"name":"2009 NASA/ESA Conference on Adaptive Hardware and Systems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Prokaryotic Bio-Inspired System\",\"authors\":\"M. Samie, G. Dragffy, A. Popescu, A. Pipe, J. Kiely\",\"doi\":\"10.1109/AHS.2009.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel bio-inspired artificial system that is based on biological prokaryotic organisms and their artificial model, and proposes a new type of fault tolerant, self-healing architecture. The system comprises of a sea of bio-inspired cells, arranged in a rectangular array with a topology that is similar to that employed by FPGAs. A key feature of the array is its high level of fault tolerance, achieved with only minimal amount of hardware overhead. Inspired by similar biological processes, the technique is based on direct-correlated redundancy, where the redundant (stand-by) configuration bits, as extrinsic experience, are shared between blocks and cells of a colony in the artificial system. Bio-inspired array implementation is particularly advantageous in applications where the system is subject to extreme environmental conditions such as temperature, radiation, SEU (Single Event Upset) etc. and where fault tolerance is of particular importance.\",\"PeriodicalId\":318989,\"journal\":{\"name\":\"2009 NASA/ESA Conference on Adaptive Hardware and Systems\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 NASA/ESA Conference on Adaptive Hardware and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AHS.2009.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 NASA/ESA Conference on Adaptive Hardware and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AHS.2009.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents a novel bio-inspired artificial system that is based on biological prokaryotic organisms and their artificial model, and proposes a new type of fault tolerant, self-healing architecture. The system comprises of a sea of bio-inspired cells, arranged in a rectangular array with a topology that is similar to that employed by FPGAs. A key feature of the array is its high level of fault tolerance, achieved with only minimal amount of hardware overhead. Inspired by similar biological processes, the technique is based on direct-correlated redundancy, where the redundant (stand-by) configuration bits, as extrinsic experience, are shared between blocks and cells of a colony in the artificial system. Bio-inspired array implementation is particularly advantageous in applications where the system is subject to extreme environmental conditions such as temperature, radiation, SEU (Single Event Upset) etc. and where fault tolerance is of particular importance.