基于粗糙集和自适应遗传算法的彩色图像增强

Zhuang Wu
{"title":"基于粗糙集和自适应遗传算法的彩色图像增强","authors":"Zhuang Wu","doi":"10.1109/MEC.2011.6025934","DOIUrl":null,"url":null,"abstract":"The paper combines rough set theory and adaptive genetic algorithm to enhance color image. First, regard the image as a knowledge system, and adopt classification method of rough set theory to combine image color attribute and noise attribute to classify the image, and then come into image boundary region and apply different enhancement algorithms to enhance the image. During rough set classification, use adaptive genetic algorithm to optimize threshold to obtain a best classification result. As image enhancement can be effectively carried out through practical application and verification, therefore, such algorithm has some certain application value.","PeriodicalId":386083,"journal":{"name":"2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Color image enhancement based on rough set and adaptive genetic algorithm\",\"authors\":\"Zhuang Wu\",\"doi\":\"10.1109/MEC.2011.6025934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper combines rough set theory and adaptive genetic algorithm to enhance color image. First, regard the image as a knowledge system, and adopt classification method of rough set theory to combine image color attribute and noise attribute to classify the image, and then come into image boundary region and apply different enhancement algorithms to enhance the image. During rough set classification, use adaptive genetic algorithm to optimize threshold to obtain a best classification result. As image enhancement can be effectively carried out through practical application and verification, therefore, such algorithm has some certain application value.\",\"PeriodicalId\":386083,\"journal\":{\"name\":\"2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEC.2011.6025934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEC.2011.6025934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文结合粗糙集理论和自适应遗传算法对彩色图像进行增强。首先将图像视为一个知识系统,采用粗糙集理论的分类方法结合图像颜色属性和噪声属性对图像进行分类,然后进入图像边界区域,应用不同的增强算法对图像进行增强。在粗糙集分类时,采用自适应遗传算法对阈值进行优化,以获得最佳分类结果。由于通过实际应用和验证可以有效地进行图像增强,因此该算法具有一定的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Color image enhancement based on rough set and adaptive genetic algorithm
The paper combines rough set theory and adaptive genetic algorithm to enhance color image. First, regard the image as a knowledge system, and adopt classification method of rough set theory to combine image color attribute and noise attribute to classify the image, and then come into image boundary region and apply different enhancement algorithms to enhance the image. During rough set classification, use adaptive genetic algorithm to optimize threshold to obtain a best classification result. As image enhancement can be effectively carried out through practical application and verification, therefore, such algorithm has some certain application value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data acquisition system for energy management based on OPC protocol Research on the electric field of electrorotation effect using passive electrostatic human body detection system Research in energy metering device of natural gas Development of linear servo control system for CNC machine tool based on DSP Sliding mode control based on passive nonlinear observer for dynamic positioning vessels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1