源代码抄袭检测:Unix方式

Juraj Petrík, D. Chudá, Branislav Steinmüller
{"title":"源代码抄袭检测:Unix方式","authors":"Juraj Petrík, D. Chudá, Branislav Steinmüller","doi":"10.1109/SAMI.2017.7880355","DOIUrl":null,"url":null,"abstract":"The paper describes similarity detection method for language independent source code similarity detection. It is based on idea of maximum reusability of standard Unix filters. This method was implemented and benchmarked with different datasets from real world (students' assignments) and also synthetic datasets (perfect plagiarism experiment). Our method achieved significantly better results than competitors, which are considered as gold standard in plagiarism detection.","PeriodicalId":105599,"journal":{"name":"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"195 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Source code plagiarism detection: The Unix way\",\"authors\":\"Juraj Petrík, D. Chudá, Branislav Steinmüller\",\"doi\":\"10.1109/SAMI.2017.7880355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes similarity detection method for language independent source code similarity detection. It is based on idea of maximum reusability of standard Unix filters. This method was implemented and benchmarked with different datasets from real world (students' assignments) and also synthetic datasets (perfect plagiarism experiment). Our method achieved significantly better results than competitors, which are considered as gold standard in plagiarism detection.\",\"PeriodicalId\":105599,\"journal\":{\"name\":\"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"volume\":\"195 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMI.2017.7880355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI.2017.7880355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文描述了一种独立于语言的源代码相似度检测方法。它基于标准Unix过滤器的最大可重用性的思想。该方法使用来自真实世界的不同数据集(学生作业)和合成数据集(完美抄袭实验)来实现和基准测试。我们的方法取得了明显优于竞争对手的结果,这被认为是抄袭检测的金标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Source code plagiarism detection: The Unix way
The paper describes similarity detection method for language independent source code similarity detection. It is based on idea of maximum reusability of standard Unix filters. This method was implemented and benchmarked with different datasets from real world (students' assignments) and also synthetic datasets (perfect plagiarism experiment). Our method achieved significantly better results than competitors, which are considered as gold standard in plagiarism detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-organising symbolic aggregate approximation for real-time fault detection and diagnosis in transient dynamic systems Robot navigation in unknown environment using fuzzy logic Artificial neural network based IDS Video-based measurement system of parameters of the pyrotechnic effect Building environment analysis based on clustering methods from sensor data on top of the Hadoop platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1