S. Ramya, D. Lingaraja, G. Ram, S. Kumar, T. Aravind
{"title":"采用确定性横向位移的微流控循环肿瘤细胞分选器","authors":"S. Ramya, D. Lingaraja, G. Ram, S. Kumar, T. Aravind","doi":"10.1109/DISCOVER52564.2021.9663577","DOIUrl":null,"url":null,"abstract":"This paper presents the separation of rare circulating tumour cells (CTCs) in the range of $15-30\\mu \\text{m}$ by designing the novel microfluidic channel to prognose the level of cancer. Prognosing the level of CTCs in a patient's blood sample will greatly reduce the mortality rate. The developed microchannel structure utilizes the concept of deterministic lateral lateral displacement. Inclusion of arrays of triangular posts with critical diameter of $42\\mu \\text{m}$ improves the separation efficiency. The optimistic microchannel’s efficiency is analyzed by validating critical diameter. Further particle tracing is employed and improved the device throughput.","PeriodicalId":413789,"journal":{"name":"2021 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Microfluidic Circulating Tumour Cell Sorter Using Deterministic Lateral Displacement\",\"authors\":\"S. Ramya, D. Lingaraja, G. Ram, S. Kumar, T. Aravind\",\"doi\":\"10.1109/DISCOVER52564.2021.9663577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the separation of rare circulating tumour cells (CTCs) in the range of $15-30\\\\mu \\\\text{m}$ by designing the novel microfluidic channel to prognose the level of cancer. Prognosing the level of CTCs in a patient's blood sample will greatly reduce the mortality rate. The developed microchannel structure utilizes the concept of deterministic lateral lateral displacement. Inclusion of arrays of triangular posts with critical diameter of $42\\\\mu \\\\text{m}$ improves the separation efficiency. The optimistic microchannel’s efficiency is analyzed by validating critical diameter. Further particle tracing is employed and improved the device throughput.\",\"PeriodicalId\":413789,\"journal\":{\"name\":\"2021 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DISCOVER52564.2021.9663577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DISCOVER52564.2021.9663577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microfluidic Circulating Tumour Cell Sorter Using Deterministic Lateral Displacement
This paper presents the separation of rare circulating tumour cells (CTCs) in the range of $15-30\mu \text{m}$ by designing the novel microfluidic channel to prognose the level of cancer. Prognosing the level of CTCs in a patient's blood sample will greatly reduce the mortality rate. The developed microchannel structure utilizes the concept of deterministic lateral lateral displacement. Inclusion of arrays of triangular posts with critical diameter of $42\mu \text{m}$ improves the separation efficiency. The optimistic microchannel’s efficiency is analyzed by validating critical diameter. Further particle tracing is employed and improved the device throughput.