基于学习的6G及未来网络零信任架构

M. A. Enright, Eman M. Hammad, Ashutosh Dutta
{"title":"基于学习的6G及未来网络零信任架构","authors":"M. A. Enright, Eman M. Hammad, Ashutosh Dutta","doi":"10.1109/FNWF55208.2022.00020","DOIUrl":null,"url":null,"abstract":"In the evolution of 6G and Future Networks, a dynamic, flexible, learning-based security architecture will be essential with the ability to handle both current and evolving cybersecurity threats. This is specially critical with future networks' increased reliance on distributed learning-based approaches for operation. To address this challenge, a distributed learning framework must provide security and trust in an integrated fashion. In contrast to existing approach such as federated learning (FL), that update parameters of a shared model, this work proposes an architecture that is capable of integrating advanced learning with real-time digital forensics, e.g. monitoring compute and storage resources. With real-time monitoring, it is possible to develop a learning-based, real-time Zero-Trust Architecture (ZTA) to achieve the high levels of security. The proposed architecture, serves as a framework to enable and spur innovation, where new machine learning based techniques can be developed for enhanced real-time, adaptive and proactive security, thus, embedding future networks' security with learning-based ZTA elements.","PeriodicalId":300165,"journal":{"name":"2022 IEEE Future Networks World Forum (FNWF)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Learning-Based Zero-Trust Architecture for 6G and Future Networks\",\"authors\":\"M. A. Enright, Eman M. Hammad, Ashutosh Dutta\",\"doi\":\"10.1109/FNWF55208.2022.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the evolution of 6G and Future Networks, a dynamic, flexible, learning-based security architecture will be essential with the ability to handle both current and evolving cybersecurity threats. This is specially critical with future networks' increased reliance on distributed learning-based approaches for operation. To address this challenge, a distributed learning framework must provide security and trust in an integrated fashion. In contrast to existing approach such as federated learning (FL), that update parameters of a shared model, this work proposes an architecture that is capable of integrating advanced learning with real-time digital forensics, e.g. monitoring compute and storage resources. With real-time monitoring, it is possible to develop a learning-based, real-time Zero-Trust Architecture (ZTA) to achieve the high levels of security. The proposed architecture, serves as a framework to enable and spur innovation, where new machine learning based techniques can be developed for enhanced real-time, adaptive and proactive security, thus, embedding future networks' security with learning-based ZTA elements.\",\"PeriodicalId\":300165,\"journal\":{\"name\":\"2022 IEEE Future Networks World Forum (FNWF)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Future Networks World Forum (FNWF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FNWF55208.2022.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Future Networks World Forum (FNWF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FNWF55208.2022.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在6G和未来网络的发展过程中,动态、灵活、基于学习的安全架构对于处理当前和不断发展的网络安全威胁的能力至关重要。随着未来网络越来越依赖基于分布式学习的操作方法,这一点尤为重要。为了应对这一挑战,分布式学习框架必须以集成的方式提供安全性和信任。与现有的方法(如更新共享模型参数的联邦学习(FL))相比,这项工作提出了一种能够将高级学习与实时数字取证(例如监控计算和存储资源)集成在一起的架构。通过实时监控,可以开发基于学习的实时零信任体系结构(ZTA),以实现高级别安全性。提出的架构作为一个框架,可以实现和刺激创新,在这个框架中,可以开发新的基于机器学习的技术,以增强实时、自适应和主动安全性,从而将未来网络的安全性嵌入基于学习的ZTA元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Learning-Based Zero-Trust Architecture for 6G and Future Networks
In the evolution of 6G and Future Networks, a dynamic, flexible, learning-based security architecture will be essential with the ability to handle both current and evolving cybersecurity threats. This is specially critical with future networks' increased reliance on distributed learning-based approaches for operation. To address this challenge, a distributed learning framework must provide security and trust in an integrated fashion. In contrast to existing approach such as federated learning (FL), that update parameters of a shared model, this work proposes an architecture that is capable of integrating advanced learning with real-time digital forensics, e.g. monitoring compute and storage resources. With real-time monitoring, it is possible to develop a learning-based, real-time Zero-Trust Architecture (ZTA) to achieve the high levels of security. The proposed architecture, serves as a framework to enable and spur innovation, where new machine learning based techniques can be developed for enhanced real-time, adaptive and proactive security, thus, embedding future networks' security with learning-based ZTA elements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SliceSecure: Impact and Detection of DoS/DDoS Attacks on 5G Network Slices A Score Function Heuristic for Crosstalk- and Fragmentation-Aware Dynamic Routing, Modulation, Core, and Spectrum Allocation in SDM-EONs Machine Learning Aided Design of Sub-Array MIMO Antennas for CubeSats Based on 3D Printed Metallic Ridge Gap Waveguides A Supra-Disciplinary Open Framework of Knowledge to Address the Future Challenges of a Network of Feelings Resource Allocation with Vickrey-Dutch Auctioning Game for C-RAN Fronthaul
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1