基于梯度方向分析的视网膜血管自动提取

Danu Onkaew, Rashmi Turior, B. Uyyanonvara, T. Kondo
{"title":"基于梯度方向分析的视网膜血管自动提取","authors":"Danu Onkaew, Rashmi Turior, B. Uyyanonvara, T. Kondo","doi":"10.1109/JCSSE.2011.5930102","DOIUrl":null,"url":null,"abstract":"Retinal vessel extraction is important for the diagnosis of numerous eye diseases. It plays an important role in automatic retinal disease screening systems. This paper presents an efficient method for the automated analysis of retinal images. Fine anatomical features, such as blood vessels, are detected by analyzing the gradient orientation of the retinal images. The method is independent of image intensity and gradient magnitude; therefore, it performs accurately despite the common problems inherent to the retinal images, such as low contrast and non-uniform illumination. Blood vessels with varying diameters are detected by applying this method at multiple scales. The blood vessel network is then extracted from the detected features by manual thresholding followed by a few simple morphological operations. Based on the binary vessel map obtained, we attempt to evaluate the performance of the proposed algorithm on two publicly available databases (DRIVE and STARE database) of manually labeled images. The receiver operating characteristics (ROC), area under ROC and segmentation accuracy is taken as the performance criteria. The results demonstrate that the proposed method outperforms other unsupervised methods in respect of maximum average accuracy (MAA). The proposed method results in the area under ROC and the accuracy of 0.9037, 0.9358 for DRIVE database 0.9117, 0.9423 for STARE database respectively.","PeriodicalId":287775,"journal":{"name":"2011 Eighth International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Automatic extraction of retinal vessels based on gradient orientation analysis\",\"authors\":\"Danu Onkaew, Rashmi Turior, B. Uyyanonvara, T. Kondo\",\"doi\":\"10.1109/JCSSE.2011.5930102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Retinal vessel extraction is important for the diagnosis of numerous eye diseases. It plays an important role in automatic retinal disease screening systems. This paper presents an efficient method for the automated analysis of retinal images. Fine anatomical features, such as blood vessels, are detected by analyzing the gradient orientation of the retinal images. The method is independent of image intensity and gradient magnitude; therefore, it performs accurately despite the common problems inherent to the retinal images, such as low contrast and non-uniform illumination. Blood vessels with varying diameters are detected by applying this method at multiple scales. The blood vessel network is then extracted from the detected features by manual thresholding followed by a few simple morphological operations. Based on the binary vessel map obtained, we attempt to evaluate the performance of the proposed algorithm on two publicly available databases (DRIVE and STARE database) of manually labeled images. The receiver operating characteristics (ROC), area under ROC and segmentation accuracy is taken as the performance criteria. The results demonstrate that the proposed method outperforms other unsupervised methods in respect of maximum average accuracy (MAA). The proposed method results in the area under ROC and the accuracy of 0.9037, 0.9358 for DRIVE database 0.9117, 0.9423 for STARE database respectively.\",\"PeriodicalId\":287775,\"journal\":{\"name\":\"2011 Eighth International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Eighth International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCSSE.2011.5930102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Eighth International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2011.5930102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

视网膜血管摘除是诊断多种眼病的重要手段。它在视网膜疾病自动筛查系统中起着重要作用。本文提出了一种有效的视网膜图像自动分析方法。通过分析视网膜图像的梯度方向,检测出血管等精细解剖特征。该方法不受图像强度和梯度大小的影响;因此,尽管存在视网膜图像固有的常见问题,如低对比度和不均匀照明,但它仍能准确地执行。该方法可在多个尺度上检测不同直径的血管。然后通过人工阈值分割,再进行简单的形态学操作,从检测到的特征中提取血管网络。基于所获得的二值船舶图,我们尝试在两个公开可用的手动标记图像数据库(DRIVE和STARE数据库)上评估所提出算法的性能。以受试者工作特征(ROC)、ROC下面积和分割精度为性能标准。结果表明,该方法在最大平均精度(MAA)方面优于其他无监督方法。所得方法的ROC下面积为0.9037、0.9358 (DRIVE数据库)、0.9117、0.9423 (STARE数据库)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic extraction of retinal vessels based on gradient orientation analysis
Retinal vessel extraction is important for the diagnosis of numerous eye diseases. It plays an important role in automatic retinal disease screening systems. This paper presents an efficient method for the automated analysis of retinal images. Fine anatomical features, such as blood vessels, are detected by analyzing the gradient orientation of the retinal images. The method is independent of image intensity and gradient magnitude; therefore, it performs accurately despite the common problems inherent to the retinal images, such as low contrast and non-uniform illumination. Blood vessels with varying diameters are detected by applying this method at multiple scales. The blood vessel network is then extracted from the detected features by manual thresholding followed by a few simple morphological operations. Based on the binary vessel map obtained, we attempt to evaluate the performance of the proposed algorithm on two publicly available databases (DRIVE and STARE database) of manually labeled images. The receiver operating characteristics (ROC), area under ROC and segmentation accuracy is taken as the performance criteria. The results demonstrate that the proposed method outperforms other unsupervised methods in respect of maximum average accuracy (MAA). The proposed method results in the area under ROC and the accuracy of 0.9037, 0.9358 for DRIVE database 0.9117, 0.9423 for STARE database respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transforming state tables to Coloured Petri nets for automatic verification of internet protocols Clustering by attraction and distraction Event recognition from information-linkage based using phrase tree traversal Towards a complete project oriented risk management model: A refinement of PRORISK Solving software module clustering problem by evolutionary algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1