{"title":"基于Apache Spark的可扩展海上交通地图推断和船舶未来位置的实时预测","authors":"Rim Moussa","doi":"10.1145/3210284.3220506","DOIUrl":null,"url":null,"abstract":"In this paper, we propose scalable algorithms allowing primo to infer a map of vessels' trajectories and secundo to predict future locations of a vessel on sea. Our system is based on Apache Spark -a fast and scalable engine for large-scale data processing. The training dataset is event-based. Each event depicts the GPS position of the vessel at a timestamp. We propose and implement a workflow computing trips' patterns, with GPS locations of each trip summarized using GeoHashing. The latter is an efficient encoding of a geographic location into a short string of letters and digits. In order to perform prediction queries efficiently, we propose (i) a geohash positional index which maps each geohash to a list of pairs (trip-pattern-identifier, offset of the geohash in the geohash sequence of the trip-pattern), (ii) a departure-port index which maps each departure port to a list of trip-patterns' identifiers, as well as (iii) a pairwise geohash sequence alignment allowing to score the similarity of two geohash-sequences using queen-spatial neighborhood.","PeriodicalId":412438,"journal":{"name":"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Scalable Maritime Traffic Map Inference and Real-time Prediction of Vessels' Future Locations on Apache Spark\",\"authors\":\"Rim Moussa\",\"doi\":\"10.1145/3210284.3220506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose scalable algorithms allowing primo to infer a map of vessels' trajectories and secundo to predict future locations of a vessel on sea. Our system is based on Apache Spark -a fast and scalable engine for large-scale data processing. The training dataset is event-based. Each event depicts the GPS position of the vessel at a timestamp. We propose and implement a workflow computing trips' patterns, with GPS locations of each trip summarized using GeoHashing. The latter is an efficient encoding of a geographic location into a short string of letters and digits. In order to perform prediction queries efficiently, we propose (i) a geohash positional index which maps each geohash to a list of pairs (trip-pattern-identifier, offset of the geohash in the geohash sequence of the trip-pattern), (ii) a departure-port index which maps each departure port to a list of trip-patterns' identifiers, as well as (iii) a pairwise geohash sequence alignment allowing to score the similarity of two geohash-sequences using queen-spatial neighborhood.\",\"PeriodicalId\":412438,\"journal\":{\"name\":\"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3210284.3220506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3210284.3220506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scalable Maritime Traffic Map Inference and Real-time Prediction of Vessels' Future Locations on Apache Spark
In this paper, we propose scalable algorithms allowing primo to infer a map of vessels' trajectories and secundo to predict future locations of a vessel on sea. Our system is based on Apache Spark -a fast and scalable engine for large-scale data processing. The training dataset is event-based. Each event depicts the GPS position of the vessel at a timestamp. We propose and implement a workflow computing trips' patterns, with GPS locations of each trip summarized using GeoHashing. The latter is an efficient encoding of a geographic location into a short string of letters and digits. In order to perform prediction queries efficiently, we propose (i) a geohash positional index which maps each geohash to a list of pairs (trip-pattern-identifier, offset of the geohash in the geohash sequence of the trip-pattern), (ii) a departure-port index which maps each departure port to a list of trip-patterns' identifiers, as well as (iii) a pairwise geohash sequence alignment allowing to score the similarity of two geohash-sequences using queen-spatial neighborhood.