使用分词与支持向量机评估小学生泰文可读性

Patcharanut Daowadung, Yaw-Huei Chen
{"title":"使用分词与支持向量机评估小学生泰文可读性","authors":"Patcharanut Daowadung, Yaw-Huei Chen","doi":"10.1109/JCSSE.2011.5930115","DOIUrl":null,"url":null,"abstract":"This research aims to develop a readability assessment technique to find appropriate Thai language reading materials for primary school students. The corpus contains 1050 articles from textbooks used by students from grade 1 to grade 6. We preprocess the articles by Ling CD program for Thai word segmentation and use mutual information (MI) to select the most important terms in the corpus. Term frequency and inverse document frequency (TF-IDF) are used as features for support vector machines (SVMs) to generate classification models. Experimental results show that the proposed method can reach 0.83 F-measure for identifying articles suitable for middle grades primary school students.","PeriodicalId":287775,"journal":{"name":"2011 Eighth International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Using word segmentation and SVM to assess readability of Thai text for primary school students\",\"authors\":\"Patcharanut Daowadung, Yaw-Huei Chen\",\"doi\":\"10.1109/JCSSE.2011.5930115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to develop a readability assessment technique to find appropriate Thai language reading materials for primary school students. The corpus contains 1050 articles from textbooks used by students from grade 1 to grade 6. We preprocess the articles by Ling CD program for Thai word segmentation and use mutual information (MI) to select the most important terms in the corpus. Term frequency and inverse document frequency (TF-IDF) are used as features for support vector machines (SVMs) to generate classification models. Experimental results show that the proposed method can reach 0.83 F-measure for identifying articles suitable for middle grades primary school students.\",\"PeriodicalId\":287775,\"journal\":{\"name\":\"2011 Eighth International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Eighth International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCSSE.2011.5930115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Eighth International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2011.5930115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本研究旨在开发一种可读性评估技术,以寻找适合小学生的泰语阅读材料。该语料库包含一年级至六年级学生使用的课本中的1050篇文章。我们使用Ling CD程序对文章进行预处理,并使用互信息(MI)从语料库中选择最重要的词。将词频和逆文档频率(TF-IDF)作为支持向量机(svm)生成分类模型的特征。实验结果表明,该方法能达到0.83的f值,能够识别出适合初中生的文章。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using word segmentation and SVM to assess readability of Thai text for primary school students
This research aims to develop a readability assessment technique to find appropriate Thai language reading materials for primary school students. The corpus contains 1050 articles from textbooks used by students from grade 1 to grade 6. We preprocess the articles by Ling CD program for Thai word segmentation and use mutual information (MI) to select the most important terms in the corpus. Term frequency and inverse document frequency (TF-IDF) are used as features for support vector machines (SVMs) to generate classification models. Experimental results show that the proposed method can reach 0.83 F-measure for identifying articles suitable for middle grades primary school students.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transforming state tables to Coloured Petri nets for automatic verification of internet protocols Clustering by attraction and distraction Event recognition from information-linkage based using phrase tree traversal Towards a complete project oriented risk management model: A refinement of PRORISK Solving software module clustering problem by evolutionary algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1