神经网络与模糊c均值方法在膀胱癌细胞分类中的比较

Y. Hu, K. Ashenayi, R. Veltri, G. O'Dowd, G. Miller, R. Hurst, R. Bonner
{"title":"神经网络与模糊c均值方法在膀胱癌细胞分类中的比较","authors":"Y. Hu, K. Ashenayi, R. Veltri, G. O'Dowd, G. Miller, R. Hurst, R. Bonner","doi":"10.1109/ICNN.1994.374891","DOIUrl":null,"url":null,"abstract":"We report the performances of cancer cell classification by using supervised and unsupervised learning techniques. A single hidden layer feedforward NN with error back-propagation training is adopted for supervised learning, and c-means clustering methods, fuzzy and nonfuzzy, are used for unsupervised learning. Network configurations with various activation functions, namely sigmoid, sinusoid and gaussian, are studied. A set of features, including cell size, average intensity, texture, shape factor and pgDNA are selected as the input for the network. These features, in particular the texture information, are shown to be very effective in capturing the discriminate information in cancer cells. It is found, based on the data from 467 cell images from six cases, the neural network approach achieves a classification rate of 96.9% while fuzzy c-means scores 76.5%.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"A comparison of neural network and fuzzy c-means methods in bladder cancer cell classification\",\"authors\":\"Y. Hu, K. Ashenayi, R. Veltri, G. O'Dowd, G. Miller, R. Hurst, R. Bonner\",\"doi\":\"10.1109/ICNN.1994.374891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report the performances of cancer cell classification by using supervised and unsupervised learning techniques. A single hidden layer feedforward NN with error back-propagation training is adopted for supervised learning, and c-means clustering methods, fuzzy and nonfuzzy, are used for unsupervised learning. Network configurations with various activation functions, namely sigmoid, sinusoid and gaussian, are studied. A set of features, including cell size, average intensity, texture, shape factor and pgDNA are selected as the input for the network. These features, in particular the texture information, are shown to be very effective in capturing the discriminate information in cancer cells. It is found, based on the data from 467 cell images from six cases, the neural network approach achieves a classification rate of 96.9% while fuzzy c-means scores 76.5%.<<ETX>>\",\"PeriodicalId\":209128,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNN.1994.374891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

我们报告了使用监督和非监督学习技术对癌细胞分类的性能。有监督学习采用带有误差反向传播训练的单隐层前馈神经网络,无监督学习采用模糊和非模糊的c均值聚类方法。研究了具有不同激活函数(s型、正弦和高斯)的网络结构。选择一组特征,包括细胞大小、平均强度、纹理、形状因子和pgDNA作为网络的输入。这些特征,特别是纹理信息,在癌细胞中被证明是非常有效的识别信息。结果表明,基于6个病例的467张细胞图像数据,神经网络方法的分类率为96.9%,模糊c均值分类率为76.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comparison of neural network and fuzzy c-means methods in bladder cancer cell classification
We report the performances of cancer cell classification by using supervised and unsupervised learning techniques. A single hidden layer feedforward NN with error back-propagation training is adopted for supervised learning, and c-means clustering methods, fuzzy and nonfuzzy, are used for unsupervised learning. Network configurations with various activation functions, namely sigmoid, sinusoid and gaussian, are studied. A set of features, including cell size, average intensity, texture, shape factor and pgDNA are selected as the input for the network. These features, in particular the texture information, are shown to be very effective in capturing the discriminate information in cancer cells. It is found, based on the data from 467 cell images from six cases, the neural network approach achieves a classification rate of 96.9% while fuzzy c-means scores 76.5%.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A neural network model of the binocular fusion in the human vision Neural network hardware performance criteria Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations Improving generalization performance by information minimization Improvement of speed control performance using PID type neurocontroller in an electric vehicle system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1