{"title":"三维多核架构中泄漏感知热供给的凸优化框架","authors":"Sanghamitra Roy, Koushik Chakraborty","doi":"10.1109/ISQED.2010.5450487","DOIUrl":null,"url":null,"abstract":"Three dimensional integrated circuits present an intriguing challenge for both circuit and system engineers due to their diverse cooling efficiency among the stacked dies. Several recent proposals advocate multiple techniques for thermal management of 3D ICs at different levels of the design, while operating within the confines of thermal heterogeneity. In this paper, we analyze for the first time, the role of thermal heterogeneity on the energy efficiency of the system by incorporating temperature dependent leakage power.We develop a novel convex optimization framework to optimize the energy efficiency in 3D ICs incorporating: (a) leakage aware thermal provisioning using temperature dependent full-chip leakage model, (b) heat flow in vertically stacked systems using a grid based compact thermal model, and (c) a concrete application for workload provisioning in 3D multicore systems. Detailed simulation based experiments with our proposed optimization framework shows 3–15% improvement in the energy efficiency of a typical multicore system organized as 3D stacked dies.","PeriodicalId":369046,"journal":{"name":"2010 11th International Symposium on Quality Electronic Design (ISQED)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A convex optimization framework for leakage aware thermal provisioning in 3D multicore architectures\",\"authors\":\"Sanghamitra Roy, Koushik Chakraborty\",\"doi\":\"10.1109/ISQED.2010.5450487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three dimensional integrated circuits present an intriguing challenge for both circuit and system engineers due to their diverse cooling efficiency among the stacked dies. Several recent proposals advocate multiple techniques for thermal management of 3D ICs at different levels of the design, while operating within the confines of thermal heterogeneity. In this paper, we analyze for the first time, the role of thermal heterogeneity on the energy efficiency of the system by incorporating temperature dependent leakage power.We develop a novel convex optimization framework to optimize the energy efficiency in 3D ICs incorporating: (a) leakage aware thermal provisioning using temperature dependent full-chip leakage model, (b) heat flow in vertically stacked systems using a grid based compact thermal model, and (c) a concrete application for workload provisioning in 3D multicore systems. Detailed simulation based experiments with our proposed optimization framework shows 3–15% improvement in the energy efficiency of a typical multicore system organized as 3D stacked dies.\",\"PeriodicalId\":369046,\"journal\":{\"name\":\"2010 11th International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 11th International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2010.5450487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2010.5450487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A convex optimization framework for leakage aware thermal provisioning in 3D multicore architectures
Three dimensional integrated circuits present an intriguing challenge for both circuit and system engineers due to their diverse cooling efficiency among the stacked dies. Several recent proposals advocate multiple techniques for thermal management of 3D ICs at different levels of the design, while operating within the confines of thermal heterogeneity. In this paper, we analyze for the first time, the role of thermal heterogeneity on the energy efficiency of the system by incorporating temperature dependent leakage power.We develop a novel convex optimization framework to optimize the energy efficiency in 3D ICs incorporating: (a) leakage aware thermal provisioning using temperature dependent full-chip leakage model, (b) heat flow in vertically stacked systems using a grid based compact thermal model, and (c) a concrete application for workload provisioning in 3D multicore systems. Detailed simulation based experiments with our proposed optimization framework shows 3–15% improvement in the energy efficiency of a typical multicore system organized as 3D stacked dies.