基于深度学习的地埋管道测绘双曲线自动检测

R. Jaufer, A. Ihamouten, D. Guilbert, Shreedar Todkar, Tarun Yaram, X. Dérobert
{"title":"基于深度学习的地埋管道测绘双曲线自动检测","authors":"R. Jaufer, A. Ihamouten, D. Guilbert, Shreedar Todkar, Tarun Yaram, X. Dérobert","doi":"10.1109/iwagpr50767.2021.9843151","DOIUrl":null,"url":null,"abstract":"Ground Penetrating Radar (GPR) is a Non-destructive Testing (NDT) method used to investigate subsurface conditions of civil engineering structures and locate buried objects using wideband electromagnetic (EM) pulse. The adoption of GPR to locate utilities has increased due to its ability to detect both metallic and non-metallic pipes. Further, the technology facilitates localization of the buried pipes with the support of signal processing steps and GPS coordinates. In this process, the presence of a pipe yields hyperbolae signatures on the B-scan. Thus, identification and localization of such hyperbolae is a vital step in the GPR signal processing towards 3D localization. For smaller GPR data sets, the human interpretation is sufficient to identify hyperbolae. However, in large-scale utility survey, precise and fast hyperbolae detection is required to accelerate the processing time and minimize human resource and costs. From the literature, several studies have been conducted previously to develop automatic hyperbola detection models based on physical methods and machine learning techniques. The performance of the models varied depending on the signal preprocessing, annotation strategy and machine learning algorithms. The common drawback of these existing models were higher false positives as any hyperbola formed by multiple reflection or other effects were also detected as true positives. Therefore, considering all pending challenges and advancement of deep learning techniques, we have proposed Faster Region-based Convolutional Neural Network (Faster R-CNN) automatic hyperbola detection models using two annotation strategies. The model has been numerically validated using 2D gprMax based on FDTD model, followed by validation on field data.","PeriodicalId":170169,"journal":{"name":"2021 11th International Workshop on Advanced Ground Penetrating Radar (IWAGPR)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Deep learning based automatic hyperbola detection on GPR data for buried utility pipes mapping\",\"authors\":\"R. Jaufer, A. Ihamouten, D. Guilbert, Shreedar Todkar, Tarun Yaram, X. Dérobert\",\"doi\":\"10.1109/iwagpr50767.2021.9843151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ground Penetrating Radar (GPR) is a Non-destructive Testing (NDT) method used to investigate subsurface conditions of civil engineering structures and locate buried objects using wideband electromagnetic (EM) pulse. The adoption of GPR to locate utilities has increased due to its ability to detect both metallic and non-metallic pipes. Further, the technology facilitates localization of the buried pipes with the support of signal processing steps and GPS coordinates. In this process, the presence of a pipe yields hyperbolae signatures on the B-scan. Thus, identification and localization of such hyperbolae is a vital step in the GPR signal processing towards 3D localization. For smaller GPR data sets, the human interpretation is sufficient to identify hyperbolae. However, in large-scale utility survey, precise and fast hyperbolae detection is required to accelerate the processing time and minimize human resource and costs. From the literature, several studies have been conducted previously to develop automatic hyperbola detection models based on physical methods and machine learning techniques. The performance of the models varied depending on the signal preprocessing, annotation strategy and machine learning algorithms. The common drawback of these existing models were higher false positives as any hyperbola formed by multiple reflection or other effects were also detected as true positives. Therefore, considering all pending challenges and advancement of deep learning techniques, we have proposed Faster Region-based Convolutional Neural Network (Faster R-CNN) automatic hyperbola detection models using two annotation strategies. The model has been numerically validated using 2D gprMax based on FDTD model, followed by validation on field data.\",\"PeriodicalId\":170169,\"journal\":{\"name\":\"2021 11th International Workshop on Advanced Ground Penetrating Radar (IWAGPR)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 11th International Workshop on Advanced Ground Penetrating Radar (IWAGPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iwagpr50767.2021.9843151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Workshop on Advanced Ground Penetrating Radar (IWAGPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iwagpr50767.2021.9843151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

探地雷达(GPR)是一种利用宽带电磁脉冲探测土木工程结构地下状况和定位埋地物体的无损检测方法。由于探地雷达能够探测金属和非金属管道,因此越来越多地采用它来定位公用事业。此外,该技术在信号处理步骤和GPS坐标的支持下,有利于埋地管道的定位。在这个过程中,管道的存在在b扫描上产生双曲线特征。因此,这种双曲线的识别和定位是探地雷达信号处理走向三维定位的重要步骤。对于较小的GPR数据集,人工解释足以识别双曲线。然而,在大规模的公用事业调查中,为了加快处理时间,减少人力资源和成本,需要精确、快速的双曲线检测。从文献来看,之前已经进行了一些研究,以开发基于物理方法和机器学习技术的自动双曲线检测模型。模型的性能取决于信号预处理、标注策略和机器学习算法。这些现有模型的共同缺点是假阳性较高,因为任何由多次反射或其他效应形成的双曲线也被检测为真阳性。因此,考虑到所有悬而未决的挑战和深度学习技术的进步,我们提出了更快的基于区域的卷积神经网络(Faster R-CNN)自动双曲线检测模型,使用两种标注策略。利用基于FDTD模型的2D gprMax对模型进行了数值验证,并对现场数据进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning based automatic hyperbola detection on GPR data for buried utility pipes mapping
Ground Penetrating Radar (GPR) is a Non-destructive Testing (NDT) method used to investigate subsurface conditions of civil engineering structures and locate buried objects using wideband electromagnetic (EM) pulse. The adoption of GPR to locate utilities has increased due to its ability to detect both metallic and non-metallic pipes. Further, the technology facilitates localization of the buried pipes with the support of signal processing steps and GPS coordinates. In this process, the presence of a pipe yields hyperbolae signatures on the B-scan. Thus, identification and localization of such hyperbolae is a vital step in the GPR signal processing towards 3D localization. For smaller GPR data sets, the human interpretation is sufficient to identify hyperbolae. However, in large-scale utility survey, precise and fast hyperbolae detection is required to accelerate the processing time and minimize human resource and costs. From the literature, several studies have been conducted previously to develop automatic hyperbola detection models based on physical methods and machine learning techniques. The performance of the models varied depending on the signal preprocessing, annotation strategy and machine learning algorithms. The common drawback of these existing models were higher false positives as any hyperbola formed by multiple reflection or other effects were also detected as true positives. Therefore, considering all pending challenges and advancement of deep learning techniques, we have proposed Faster Region-based Convolutional Neural Network (Faster R-CNN) automatic hyperbola detection models using two annotation strategies. The model has been numerically validated using 2D gprMax based on FDTD model, followed by validation on field data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparing Adam and SGD optimizers to train AlexNet for classifying GPR C-scans featuring ancient structures Polarimetric Alpha Angle versus Relative Permittivity with Dual-Polarimetric GPR Experiments GPR Monitoring at the Crypt of Sant’Agnese in Agone Church, Rome, Italy Evaluation of the possibility of using the radio frequency range for the survey of the Great Pyramid Full Waveform Inversion of common offset GPR data using a fast deep learning based forward solver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1