使用鲁棒点匹配和无网格变形模型的3D心脏运动跟踪

Ting Chen, Xiaoxu Wang, Dimitris N. Metaxas, L. Axel
{"title":"使用鲁棒点匹配和无网格变形模型的3D心脏运动跟踪","authors":"Ting Chen, Xiaoxu Wang, Dimitris N. Metaxas, L. Axel","doi":"10.1109/ISBI.2008.4540987","DOIUrl":null,"url":null,"abstract":"We propose a novel 3D motion estimation approach integrating the robust point matching (RPM) and meshless deformable models. In our study, we first use the Gabor filters to generate phase maps of short axis (SA) and long axis (LA) tagged MRI sequences. Then we use the RPM to track the heart motion sparsely at intersections of tag grids in these image sequences, using both intensity gradient and phase information. Next, the new meshless deformable model is used to recover the dense 3D motion of the myocardium temporally during the cardiac cycle. The deformable model is driven by external forces computed at tag intersections based on the RPM motion tracking and keeps a consistent but flexible topology during the deformation using internal constraint forces calculated by the moving least squares (MLS) method. The deformable model recovers the global deformation of the LV such as rotation, contraction and twisting by integrating global deformation parameters over the volume. The new model avoids the singularity problem of mesh-based deformable models and is capable of tracking deformation efficiently with the sparse external forces derived from tagging line intersections. We test the performance of the new approach on in vivo heart data of healthy subjects and patients. The experimental results show that our new method can fully recover the myocardium motion and strain in 3D.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"3D cardiac motion tracking using Robust Point Matching and meshless deformable models\",\"authors\":\"Ting Chen, Xiaoxu Wang, Dimitris N. Metaxas, L. Axel\",\"doi\":\"10.1109/ISBI.2008.4540987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel 3D motion estimation approach integrating the robust point matching (RPM) and meshless deformable models. In our study, we first use the Gabor filters to generate phase maps of short axis (SA) and long axis (LA) tagged MRI sequences. Then we use the RPM to track the heart motion sparsely at intersections of tag grids in these image sequences, using both intensity gradient and phase information. Next, the new meshless deformable model is used to recover the dense 3D motion of the myocardium temporally during the cardiac cycle. The deformable model is driven by external forces computed at tag intersections based on the RPM motion tracking and keeps a consistent but flexible topology during the deformation using internal constraint forces calculated by the moving least squares (MLS) method. The deformable model recovers the global deformation of the LV such as rotation, contraction and twisting by integrating global deformation parameters over the volume. The new model avoids the singularity problem of mesh-based deformable models and is capable of tracking deformation efficiently with the sparse external forces derived from tagging line intersections. We test the performance of the new approach on in vivo heart data of healthy subjects and patients. The experimental results show that our new method can fully recover the myocardium motion and strain in 3D.\",\"PeriodicalId\":184204,\"journal\":{\"name\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2008.4540987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4540987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种结合鲁棒点匹配和无网格变形模型的三维运动估计方法。在我们的研究中,我们首先使用Gabor滤波器来生成短轴(SA)和长轴(LA)标记的MRI序列的相位图。然后,我们使用RPM在这些图像序列中标记网格的交叉点稀疏跟踪心脏运动,同时使用强度梯度和相位信息。然后,利用新的无网格可变形模型暂时恢复心肌在心动周期中密集的三维运动。该变形模型基于RPM运动跟踪,由标签交点处计算的外力驱动,并利用运动最小二乘(MLS)方法计算的内力在变形过程中保持一致的柔性拓扑。可变形模型通过对体积上的全局变形参数进行积分,恢复LV的旋转、收缩、扭转等全局变形。该模型避免了基于网格的变形模型的奇异性问题,能够利用标记线相交产生的稀疏外力有效地跟踪变形。我们在健康受试者和患者的体内心脏数据上测试了新方法的性能。实验结果表明,该方法可以完全恢复心肌运动和应变的三维图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D cardiac motion tracking using Robust Point Matching and meshless deformable models
We propose a novel 3D motion estimation approach integrating the robust point matching (RPM) and meshless deformable models. In our study, we first use the Gabor filters to generate phase maps of short axis (SA) and long axis (LA) tagged MRI sequences. Then we use the RPM to track the heart motion sparsely at intersections of tag grids in these image sequences, using both intensity gradient and phase information. Next, the new meshless deformable model is used to recover the dense 3D motion of the myocardium temporally during the cardiac cycle. The deformable model is driven by external forces computed at tag intersections based on the RPM motion tracking and keeps a consistent but flexible topology during the deformation using internal constraint forces calculated by the moving least squares (MLS) method. The deformable model recovers the global deformation of the LV such as rotation, contraction and twisting by integrating global deformation parameters over the volume. The new model avoids the singularity problem of mesh-based deformable models and is capable of tracking deformation efficiently with the sparse external forces derived from tagging line intersections. We test the performance of the new approach on in vivo heart data of healthy subjects and patients. The experimental results show that our new method can fully recover the myocardium motion and strain in 3D.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EEG source localization by multi-planar analytic sensing 3D general lesion segmentation in CT Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features Iterative nonlinear least squares algorithms for direct reconstruction of parametric images from dynamic PET Pathological image segmentation for neuroblastoma using the GPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1