Y. Hishikawa, T. Kinoshita, M. Shima, M. Tanaka, S. Kiyama, S. Tsuda, S. Nakano
{"title":"高效a-Si太阳能电池的光约束和光损耗","authors":"Y. Hishikawa, T. Kinoshita, M. Shima, M. Tanaka, S. Kiyama, S. Tsuda, S. Nakano","doi":"10.1109/PVSC.1997.654164","DOIUrl":null,"url":null,"abstract":"The world's highest stabilized conversion efficiency of 9.5% has been achieved for a 30/spl times/40 cm/sup 2/ a-Si/a-SiGe glass superstrate solar cell submodule. However, significant optical loss still exists even in these high-efficiency a-Si solar cells. FEM numerical simulation has shown that the primary origin of the optical loss in textured a-Si solar cells at about /spl ges/800 nm is absorption in SnO/sub 2/ which is enhanced by the optical confinement effect. Optical confinement also results in increased absorption in the metal electrode, which is another source of optical loss.","PeriodicalId":251166,"journal":{"name":"Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997","volume":"44 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Optical confinement and optical loss in high-efficiency a-Si solar cells\",\"authors\":\"Y. Hishikawa, T. Kinoshita, M. Shima, M. Tanaka, S. Kiyama, S. Tsuda, S. Nakano\",\"doi\":\"10.1109/PVSC.1997.654164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The world's highest stabilized conversion efficiency of 9.5% has been achieved for a 30/spl times/40 cm/sup 2/ a-Si/a-SiGe glass superstrate solar cell submodule. However, significant optical loss still exists even in these high-efficiency a-Si solar cells. FEM numerical simulation has shown that the primary origin of the optical loss in textured a-Si solar cells at about /spl ges/800 nm is absorption in SnO/sub 2/ which is enhanced by the optical confinement effect. Optical confinement also results in increased absorption in the metal electrode, which is another source of optical loss.\",\"PeriodicalId\":251166,\"journal\":{\"name\":\"Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997\",\"volume\":\"44 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.1997.654164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.1997.654164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optical confinement and optical loss in high-efficiency a-Si solar cells
The world's highest stabilized conversion efficiency of 9.5% has been achieved for a 30/spl times/40 cm/sup 2/ a-Si/a-SiGe glass superstrate solar cell submodule. However, significant optical loss still exists even in these high-efficiency a-Si solar cells. FEM numerical simulation has shown that the primary origin of the optical loss in textured a-Si solar cells at about /spl ges/800 nm is absorption in SnO/sub 2/ which is enhanced by the optical confinement effect. Optical confinement also results in increased absorption in the metal electrode, which is another source of optical loss.