机器学习驱动的负责任游戏框架与apache spark

D. Mijić, E. Varga
{"title":"机器学习驱动的负责任游戏框架与apache spark","authors":"D. Mijić, E. Varga","doi":"10.1109/TELFOR.2017.8249466","DOIUrl":null,"url":null,"abstract":"This paper tackles an important and challenging problem of protecting players from irresponsible gambling behavior. Such prevention is a crucial and mandatory obligation for major gambling providers. The paper presents a novel machine learning driven solution for implementing the responsible gaming facility. The engine leverages two powerful machine learning algorithms: random forest and gradient boosting. The tests were actualized by reusing a publicly available dataset provided by Transparency Project. The final results confirm that the proposed implementation of the framework passes the criteria as a proof of concept solution.","PeriodicalId":422501,"journal":{"name":"2017 25th Telecommunication Forum (TELFOR)","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Machine learning driven responsible gaming framework with apache spark\",\"authors\":\"D. Mijić, E. Varga\",\"doi\":\"10.1109/TELFOR.2017.8249466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper tackles an important and challenging problem of protecting players from irresponsible gambling behavior. Such prevention is a crucial and mandatory obligation for major gambling providers. The paper presents a novel machine learning driven solution for implementing the responsible gaming facility. The engine leverages two powerful machine learning algorithms: random forest and gradient boosting. The tests were actualized by reusing a publicly available dataset provided by Transparency Project. The final results confirm that the proposed implementation of the framework passes the criteria as a proof of concept solution.\",\"PeriodicalId\":422501,\"journal\":{\"name\":\"2017 25th Telecommunication Forum (TELFOR)\",\"volume\":\"174 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th Telecommunication Forum (TELFOR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELFOR.2017.8249466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th Telecommunication Forum (TELFOR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELFOR.2017.8249466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文解决了一个重要的和具有挑战性的问题,即保护玩家免受不负责任的赌博行为。这种预防是主要赌博提供者的关键和强制性义务。本文提出了一种新的机器学习驱动的解决方案,用于实现负责任的游戏设施。该引擎利用了两种强大的机器学习算法:随机森林和梯度增强。这些测试是通过重用透明项目提供的公开可用数据集来实现的。最终结果证实,该框架的拟议实现通过了作为概念验证解决方案的标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning driven responsible gaming framework with apache spark
This paper tackles an important and challenging problem of protecting players from irresponsible gambling behavior. Such prevention is a crucial and mandatory obligation for major gambling providers. The paper presents a novel machine learning driven solution for implementing the responsible gaming facility. The engine leverages two powerful machine learning algorithms: random forest and gradient boosting. The tests were actualized by reusing a publicly available dataset provided by Transparency Project. The final results confirm that the proposed implementation of the framework passes the criteria as a proof of concept solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proposing bat inspired heuristic algorithm for the optimization of GMPLS networks Investigation on temporal skewing among O-CDMA code carriers under fiber temperature variations Survey on machine learning algorithms as cloud service for CIDPS Identity provider deployment based on container technology Enhanced bandwidth PIFA antennas for 900/1800 MHz and WiFi 2400 MHz band with a dielectric cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1