麻醉深度指标采用复杂性和频率测量相结合的方法

R. Shalbaf, A. Mehrnam, H. Behnam
{"title":"麻醉深度指标采用复杂性和频率测量相结合的方法","authors":"R. Shalbaf, A. Mehrnam, H. Behnam","doi":"10.1109/ICBME.2014.7043912","DOIUrl":null,"url":null,"abstract":"Depth of anesthesia estimation with the Electroencephalogram (EEG) is a main current challenge in anesthesia studies. This paper proposes an original method founded on combination of permutation entropy and frequency measure to calculate an index, called Brain function index (BFI), to quantify depth of anesthesia. As EEG derived features characterize different aspects of EEG signal, it would be logical to utilize multiple features to evaluate the effect of anesthetic. Such a method implemented in the Saadat brain function assessment module (Saadat Co., Tehran, Iran). The BFI and commercial RE index as employed in the Datex-Ohmeda monitor are applied to EEG signals gathered from 18 patients during sevoflurane anesthesia. The results show that both BFI and RE indices track the changes in EEG especially at deep anesthesia state. However, the BFI index makes better response about the point of loss of consciousness and it can be derived with significantly less computational complexity. Taking into account the high accuracy of this method, an innovative EEG processing device may be extended to help the anesthetists to estimate the depth of anesthesia precisely.","PeriodicalId":434822,"journal":{"name":"2014 21th Iranian Conference on Biomedical Engineering (ICBME)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Depth of anesthesia indicator using combination of complexity and frequency measures\",\"authors\":\"R. Shalbaf, A. Mehrnam, H. Behnam\",\"doi\":\"10.1109/ICBME.2014.7043912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depth of anesthesia estimation with the Electroencephalogram (EEG) is a main current challenge in anesthesia studies. This paper proposes an original method founded on combination of permutation entropy and frequency measure to calculate an index, called Brain function index (BFI), to quantify depth of anesthesia. As EEG derived features characterize different aspects of EEG signal, it would be logical to utilize multiple features to evaluate the effect of anesthetic. Such a method implemented in the Saadat brain function assessment module (Saadat Co., Tehran, Iran). The BFI and commercial RE index as employed in the Datex-Ohmeda monitor are applied to EEG signals gathered from 18 patients during sevoflurane anesthesia. The results show that both BFI and RE indices track the changes in EEG especially at deep anesthesia state. However, the BFI index makes better response about the point of loss of consciousness and it can be derived with significantly less computational complexity. Taking into account the high accuracy of this method, an innovative EEG processing device may be extended to help the anesthetists to estimate the depth of anesthesia precisely.\",\"PeriodicalId\":434822,\"journal\":{\"name\":\"2014 21th Iranian Conference on Biomedical Engineering (ICBME)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 21th Iranian Conference on Biomedical Engineering (ICBME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBME.2014.7043912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 21th Iranian Conference on Biomedical Engineering (ICBME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBME.2014.7043912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用脑电图估计麻醉深度是当前麻醉研究的一个主要挑战。本文提出了一种基于排列熵和频率测度相结合的方法,计算脑功能指数(BFI)来量化麻醉深度。由于脑电图衍生特征表征了脑电图信号的不同方面,因此利用多种特征来评价麻醉效果是合乎逻辑的。该方法在Saadat脑功能评估模块(Saadat Co.,德黑兰,伊朗)中实现。采用Datex-Ohmeda监测仪中的BFI和商用RE指数对18例七氟醚麻醉患者的脑电图信号进行分析。结果表明,BFI和RE指标均能跟踪脑电变化,尤其是深度麻醉状态下。而BFI指数对意识丧失点的响应较好,且计算复杂度显著降低。考虑到该方法的高准确度,可以扩展一种创新的脑电图处理装置,以帮助麻醉师准确估计麻醉深度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Depth of anesthesia indicator using combination of complexity and frequency measures
Depth of anesthesia estimation with the Electroencephalogram (EEG) is a main current challenge in anesthesia studies. This paper proposes an original method founded on combination of permutation entropy and frequency measure to calculate an index, called Brain function index (BFI), to quantify depth of anesthesia. As EEG derived features characterize different aspects of EEG signal, it would be logical to utilize multiple features to evaluate the effect of anesthetic. Such a method implemented in the Saadat brain function assessment module (Saadat Co., Tehran, Iran). The BFI and commercial RE index as employed in the Datex-Ohmeda monitor are applied to EEG signals gathered from 18 patients during sevoflurane anesthesia. The results show that both BFI and RE indices track the changes in EEG especially at deep anesthesia state. However, the BFI index makes better response about the point of loss of consciousness and it can be derived with significantly less computational complexity. Taking into account the high accuracy of this method, an innovative EEG processing device may be extended to help the anesthetists to estimate the depth of anesthesia precisely.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A time-delay parallel cascade identification system for predicting jaw movements Automated decomposition of needle EMG signal using STFT and wavelet transforms Sparse representation-based super-resolution for diffusion weighted images Investigation of Brain Default Network's activation in autism spectrum disorders using Group Independent Component Analysis Pragmatic modeling of chaotic dynamical systems through artificial neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1