在植物监测应用的神经网络算法中茎电阻抗的影响

Mattia Barezzi, Federico Cum, U. Garlando, Maurizio Martina, D. Demarchi
{"title":"在植物监测应用的神经网络算法中茎电阻抗的影响","authors":"Mattia Barezzi, Federico Cum, U. Garlando, Maurizio Martina, D. Demarchi","doi":"10.1109/MetroAgriFor55389.2022.9965011","DOIUrl":null,"url":null,"abstract":"Smart agriculture offers an environmental-friendly path with respect to unsustainable farming that depletes the nutrients in the soil leading to a persistent degradation of ecosystems caused by population growth. Artificial Intelligence (AI) can help mitigate this issue by predicting plant health status to reduce the use of chemicals and optimize water usage. This paper proposes a custom framework to train neural networks and a comparison among different models to point out the impact and the importance of the stem electrical impedance in addition to environmental parameters for plant monitoring applications. In particular, the paper demonstrates how stem electrical impedance improves the accuracy of the proposed neural network application for plant status classification. The data set is composed of electrical impedance spectra and environmental data acquired on four tobacco plants for a two-month-long experiment. In this paper, we describe the acquisition system architecture, the feature composition of the data set, a general overview of the developed framework, and the training of the neural networks showing the different results considering both the stem impedance and the environmental parameters.","PeriodicalId":374452,"journal":{"name":"2022 IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the impact of the stem electrical impedance in neural network algorithms for plant monitoring applications\",\"authors\":\"Mattia Barezzi, Federico Cum, U. Garlando, Maurizio Martina, D. Demarchi\",\"doi\":\"10.1109/MetroAgriFor55389.2022.9965011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart agriculture offers an environmental-friendly path with respect to unsustainable farming that depletes the nutrients in the soil leading to a persistent degradation of ecosystems caused by population growth. Artificial Intelligence (AI) can help mitigate this issue by predicting plant health status to reduce the use of chemicals and optimize water usage. This paper proposes a custom framework to train neural networks and a comparison among different models to point out the impact and the importance of the stem electrical impedance in addition to environmental parameters for plant monitoring applications. In particular, the paper demonstrates how stem electrical impedance improves the accuracy of the proposed neural network application for plant status classification. The data set is composed of electrical impedance spectra and environmental data acquired on four tobacco plants for a two-month-long experiment. In this paper, we describe the acquisition system architecture, the feature composition of the data set, a general overview of the developed framework, and the training of the neural networks showing the different results considering both the stem impedance and the environmental parameters.\",\"PeriodicalId\":374452,\"journal\":{\"name\":\"2022 IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MetroAgriFor55389.2022.9965011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroAgriFor55389.2022.9965011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

智能农业为不可持续的农业提供了一条环境友好的道路,因为不可持续的农业会耗尽土壤中的养分,导致人口增长导致生态系统的持续退化。人工智能(AI)可以通过预测植物健康状况来减少化学品的使用并优化用水,从而帮助缓解这一问题。本文提出了一个定制的框架来训练神经网络,并在不同模型之间进行了比较,以指出除环境参数外,系统电阻抗对工厂监测应用的影响和重要性。特别是,本文演示了茎电阻抗如何提高所提出的神经网络应用于植物状态分类的准确性。该数据集由四个烟草植株的电阻抗谱和环境数据组成,这些数据是在两个月的实验中获得的。在本文中,我们描述了采集系统的架构,数据集的特征组成,开发框架的总体概述,以及神经网络的训练,显示了考虑干阻抗和环境参数的不同结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the impact of the stem electrical impedance in neural network algorithms for plant monitoring applications
Smart agriculture offers an environmental-friendly path with respect to unsustainable farming that depletes the nutrients in the soil leading to a persistent degradation of ecosystems caused by population growth. Artificial Intelligence (AI) can help mitigate this issue by predicting plant health status to reduce the use of chemicals and optimize water usage. This paper proposes a custom framework to train neural networks and a comparison among different models to point out the impact and the importance of the stem electrical impedance in addition to environmental parameters for plant monitoring applications. In particular, the paper demonstrates how stem electrical impedance improves the accuracy of the proposed neural network application for plant status classification. The data set is composed of electrical impedance spectra and environmental data acquired on four tobacco plants for a two-month-long experiment. In this paper, we describe the acquisition system architecture, the feature composition of the data set, a general overview of the developed framework, and the training of the neural networks showing the different results considering both the stem impedance and the environmental parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Treatment of dairy cattle slurry for biogas production and nitrogen recovery The efficiency of digestate as inoculum for in vitro digestibility of feeds Ion Mobility Spectrometry for Rapid HEMP Potency Testing - spectrometric testing of technical hemp A customizable and use friendly R package to process big data from the Tree Talker system Benefits of using production factors in assessing farm risk: a simulation on the role of irrigation data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1