基于改进粒子热优化算法的机械设计优化研究

Zhou Ning, Zhang Jing
{"title":"基于改进粒子热优化算法的机械设计优化研究","authors":"Zhou Ning, Zhang Jing","doi":"10.2174/1874155X01509010961","DOIUrl":null,"url":null,"abstract":"In view of local optimization in particle swarm optimization algorithm (PSO algorithm), chaos theory was introduced to PSO algorithm in this paper. Plenty of populations were generated by using the ergodicity of chaotic motion. The uniformly distributed initial particles of the particle swarms were extracted from the populations according to the Euclidean distance between particles, so that the particles could uniformly distribute in the solution space. Local search was carried out on the optimal position of the particles during evolution, so as to improve the development capability of PSO algorithm and prevent its prematurity, thus enhancing its global optimizing capability. Then the improved PSO algorithm was applied to mechanical design optimization. With optimization design for two-stage gear reducer as the study object, objective function and constraint conditions were determined by building a mathematical model of optimization design, thus realizing optimization design. Simulation and comparison between the improved algorithm and unimproved algorithm show that improved PSO algorithm can optimize the optimization results of PSO algorithm at a faster convergence rate.","PeriodicalId":267392,"journal":{"name":"The Open Mechanical Engineering Journal","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Mechanical Design Optimization Based on Improved ParticleSwarm Optimization Algorithm\",\"authors\":\"Zhou Ning, Zhang Jing\",\"doi\":\"10.2174/1874155X01509010961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of local optimization in particle swarm optimization algorithm (PSO algorithm), chaos theory was introduced to PSO algorithm in this paper. Plenty of populations were generated by using the ergodicity of chaotic motion. The uniformly distributed initial particles of the particle swarms were extracted from the populations according to the Euclidean distance between particles, so that the particles could uniformly distribute in the solution space. Local search was carried out on the optimal position of the particles during evolution, so as to improve the development capability of PSO algorithm and prevent its prematurity, thus enhancing its global optimizing capability. Then the improved PSO algorithm was applied to mechanical design optimization. With optimization design for two-stage gear reducer as the study object, objective function and constraint conditions were determined by building a mathematical model of optimization design, thus realizing optimization design. Simulation and comparison between the improved algorithm and unimproved algorithm show that improved PSO algorithm can optimize the optimization results of PSO algorithm at a faster convergence rate.\",\"PeriodicalId\":267392,\"journal\":{\"name\":\"The Open Mechanical Engineering Journal\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Open Mechanical Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874155X01509010961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Mechanical Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874155X01509010961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对粒子群优化算法(PSO)中的局部寻优问题,将混沌理论引入粒子群优化算法。利用混沌运动的遍历性产生了大量的种群。根据粒子间的欧氏距离从粒子群中提取均匀分布的初始粒子,使粒子群在溶液空间中均匀分布。在进化过程中对粒子的最优位置进行局部搜索,提高粒子群算法的发展能力,防止其早熟,增强其全局寻优能力。然后将改进的粒子群算法应用于机械设计优化。以两级齿轮减速器优化设计为研究对象,通过建立优化设计的数学模型,确定优化设计的目标函数和约束条件,从而实现优化设计。改进算法与未改进算法的仿真和比较表明,改进的粒子群算法能够以更快的收敛速度优化粒子群算法的优化结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on Mechanical Design Optimization Based on Improved ParticleSwarm Optimization Algorithm
In view of local optimization in particle swarm optimization algorithm (PSO algorithm), chaos theory was introduced to PSO algorithm in this paper. Plenty of populations were generated by using the ergodicity of chaotic motion. The uniformly distributed initial particles of the particle swarms were extracted from the populations according to the Euclidean distance between particles, so that the particles could uniformly distribute in the solution space. Local search was carried out on the optimal position of the particles during evolution, so as to improve the development capability of PSO algorithm and prevent its prematurity, thus enhancing its global optimizing capability. Then the improved PSO algorithm was applied to mechanical design optimization. With optimization design for two-stage gear reducer as the study object, objective function and constraint conditions were determined by building a mathematical model of optimization design, thus realizing optimization design. Simulation and comparison between the improved algorithm and unimproved algorithm show that improved PSO algorithm can optimize the optimization results of PSO algorithm at a faster convergence rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wear and Corrosion Resistance of Hardened Fe-Al-Mn Grinding Ball Revised Lewis Bending Stress Capacity Model The Efficient and Tentative Model for Extenics Replications of the Moveable Robots Controllable Magnetoactive Polymer Conduit Experimental Studying of the Variations of Surface Roughness and Dimensional Accuracy in Dry Hard Turning Operation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1