低资源口语理解的迁移学习

Swapnil Bhosale, I. Sheikh, Sri Harsha Dumpala, S. Kopparapu
{"title":"低资源口语理解的迁移学习","authors":"Swapnil Bhosale, I. Sheikh, Sri Harsha Dumpala, S. Kopparapu","doi":"10.1109/IBSSC47189.2019.8973067","DOIUrl":null,"url":null,"abstract":"Spoken Language Understanding (SLU) without speech-to-text conversion is more promising in low resource scenarios. These could be applications where there is not enough labeled data to train reliable speech recognition and language understanding systems, or where running SLU on edge is preferred over cloud based services. In this paper, we present an approach for building SLU without speech-to-text conversion in low resource scenarios using a transfer learning approach. We show that the intermediate layer representations from a pre-trained model outperforms the typically used Mel filter bank features. Moreover, the representations extracted from a model pre-trained on one language perform well even for SLU tasks on a different language.","PeriodicalId":148941,"journal":{"name":"2019 IEEE Bombay Section Signature Conference (IBSSC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer Learning for Low Resource Spoken Language Understanding without Speech-to-Text\",\"authors\":\"Swapnil Bhosale, I. Sheikh, Sri Harsha Dumpala, S. Kopparapu\",\"doi\":\"10.1109/IBSSC47189.2019.8973067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spoken Language Understanding (SLU) without speech-to-text conversion is more promising in low resource scenarios. These could be applications where there is not enough labeled data to train reliable speech recognition and language understanding systems, or where running SLU on edge is preferred over cloud based services. In this paper, we present an approach for building SLU without speech-to-text conversion in low resource scenarios using a transfer learning approach. We show that the intermediate layer representations from a pre-trained model outperforms the typically used Mel filter bank features. Moreover, the representations extracted from a model pre-trained on one language perform well even for SLU tasks on a different language.\",\"PeriodicalId\":148941,\"journal\":{\"name\":\"2019 IEEE Bombay Section Signature Conference (IBSSC)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Bombay Section Signature Conference (IBSSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IBSSC47189.2019.8973067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Bombay Section Signature Conference (IBSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBSSC47189.2019.8973067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

没有语音到文本转换的口语理解(SLU)在低资源场景下更有前景。这些应用程序可能没有足够的标记数据来训练可靠的语音识别和语言理解系统,或者在边缘运行SLU比基于云的服务更受欢迎。在本文中,我们提出了一种在低资源场景下使用迁移学习方法构建无语音到文本转换的SLU的方法。我们表明,来自预训练模型的中间层表示优于通常使用的Mel滤波器组特征。此外,从一种语言预训练的模型中提取的表示即使在不同语言的SLU任务中也表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transfer Learning for Low Resource Spoken Language Understanding without Speech-to-Text
Spoken Language Understanding (SLU) without speech-to-text conversion is more promising in low resource scenarios. These could be applications where there is not enough labeled data to train reliable speech recognition and language understanding systems, or where running SLU on edge is preferred over cloud based services. In this paper, we present an approach for building SLU without speech-to-text conversion in low resource scenarios using a transfer learning approach. We show that the intermediate layer representations from a pre-trained model outperforms the typically used Mel filter bank features. Moreover, the representations extracted from a model pre-trained on one language perform well even for SLU tasks on a different language.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cybersecurity and Network Performance Modeling in Cyber-Physical Communication for BigData and Industrial IoT Technologies An improved lane and vehicle detection method in Driver Assistance System with Lane Departure and Forward Collision Warning Intuitive solution for Robot Maze Problem using Image Processing Spoken Indian Language Classification using GMM supervectors and Artificial Neural Networks An AI driven Genomic Profiling System and Secure Data Sharing using DLT for cancer patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1