探索可穿戴IMU传感器检测到的相互作用

Rajesh Kuni, Yashaswini Prathivadi, Jian Wu, Terrell R. Bennett, R. Jafari
{"title":"探索可穿戴IMU传感器检测到的相互作用","authors":"Rajesh Kuni, Yashaswini Prathivadi, Jian Wu, Terrell R. Bennett, R. Jafari","doi":"10.1109/BSN.2015.7299394","DOIUrl":null,"url":null,"abstract":"Context aware systems like smart homes and offices will benefit from determining human-object and human-human interactions. In this paper, we explore interaction detection methods using only wearable Inertial Measurement Units (IMUs). The interactions we explore involve two actors - the primary person and a secondary object or person. We explore how several commonly used time domain signal processing operators can be utilized to detect the similar movements in the interactions and thus the interactions themselves. We also utilize a well-known boosting algorithm to potentially increase the accuracy of the operator results. The techniques operate on the magnitudes of the acceleration and gyroscope readings to keep the analysis independent of the orientation of the sensors. The detection accuracy for six interactions using the approach presented in the paper range from 84.2% to 69.6%.","PeriodicalId":447934,"journal":{"name":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Exploration of interactions detectable by wearable IMU sensors\",\"authors\":\"Rajesh Kuni, Yashaswini Prathivadi, Jian Wu, Terrell R. Bennett, R. Jafari\",\"doi\":\"10.1109/BSN.2015.7299394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Context aware systems like smart homes and offices will benefit from determining human-object and human-human interactions. In this paper, we explore interaction detection methods using only wearable Inertial Measurement Units (IMUs). The interactions we explore involve two actors - the primary person and a secondary object or person. We explore how several commonly used time domain signal processing operators can be utilized to detect the similar movements in the interactions and thus the interactions themselves. We also utilize a well-known boosting algorithm to potentially increase the accuracy of the operator results. The techniques operate on the magnitudes of the acceleration and gyroscope readings to keep the analysis independent of the orientation of the sensors. The detection accuracy for six interactions using the approach presented in the paper range from 84.2% to 69.6%.\",\"PeriodicalId\":447934,\"journal\":{\"name\":\"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2015.7299394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2015.7299394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

智能家居和办公室等环境感知系统将受益于确定人-物和人与人之间的互动。在本文中,我们探索仅使用可穿戴惯性测量单元(imu)的相互作用检测方法。我们探索的互动涉及两个行动者——主要的人和次要的对象或人。我们探讨了如何利用几种常用的时域信号处理算子来检测相互作用中的类似运动,从而检测相互作用本身。我们还利用一种著名的增强算法来潜在地提高算子结果的准确性。该技术对加速度和陀螺仪读数的大小进行操作,以保持分析独立于传感器的方向。本文提出的方法对6种相互作用的检测精度在84.2% ~ 69.6%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploration of interactions detectable by wearable IMU sensors
Context aware systems like smart homes and offices will benefit from determining human-object and human-human interactions. In this paper, we explore interaction detection methods using only wearable Inertial Measurement Units (IMUs). The interactions we explore involve two actors - the primary person and a secondary object or person. We explore how several commonly used time domain signal processing operators can be utilized to detect the similar movements in the interactions and thus the interactions themselves. We also utilize a well-known boosting algorithm to potentially increase the accuracy of the operator results. The techniques operate on the magnitudes of the acceleration and gyroscope readings to keep the analysis independent of the orientation of the sensors. The detection accuracy for six interactions using the approach presented in the paper range from 84.2% to 69.6%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of a smart insole for ambulatory assessment of gait Anticipatory signals in kinematics and muscle activity during functional grasp and release Piezoelectrets and their applications as wearable physiological-signal sensors and energy harvesters Automated guidance from physiological sensing to reduce thermal-work strain levels on a novel task An unsupervised approach for gait-based authentication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1