鲁棒语音识别中一种新的基于神经网络的语音建模方法

Guangpu Huang, M. Er
{"title":"鲁棒语音识别中一种新的基于神经网络的语音建模方法","authors":"Guangpu Huang, M. Er","doi":"10.1109/ASRU.2011.6163985","DOIUrl":null,"url":null,"abstract":"This paper describes a recurrent neural network (RNN) based articulatory-phonetic inversion (API) model for improved speech recognition. And a specialized optimization algorithm is introduced to enable human-like heuristic learning in an efficient data-driven manner to capture the dynamic nature of English speech pronunciations. The API model demonstrates superior pronunciation modeling ability and robustness against noise contaminations in large-vocabulary speech recognition experiments. Using a simple rescoring formula, it improves the hidden Markov model (HMM) baseline speech recognizer with consistent error rates reduction of 5.30% and 10.14% for phoneme recognition tasks on clean and noisy speech respectively on the selected TIMIT datasets. And an error rate reduction of 3.35% is obtained for the SCRIBE-TIMIT word recognition tasks. The proposed system qualifies as a competitive candidate for profound pronunciation modeling with intrinsic salient features such as generality and portability.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A novel neural-based pronunciation modeling method for robust speech recognition\",\"authors\":\"Guangpu Huang, M. Er\",\"doi\":\"10.1109/ASRU.2011.6163985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a recurrent neural network (RNN) based articulatory-phonetic inversion (API) model for improved speech recognition. And a specialized optimization algorithm is introduced to enable human-like heuristic learning in an efficient data-driven manner to capture the dynamic nature of English speech pronunciations. The API model demonstrates superior pronunciation modeling ability and robustness against noise contaminations in large-vocabulary speech recognition experiments. Using a simple rescoring formula, it improves the hidden Markov model (HMM) baseline speech recognizer with consistent error rates reduction of 5.30% and 10.14% for phoneme recognition tasks on clean and noisy speech respectively on the selected TIMIT datasets. And an error rate reduction of 3.35% is obtained for the SCRIBE-TIMIT word recognition tasks. The proposed system qualifies as a competitive candidate for profound pronunciation modeling with intrinsic salient features such as generality and portability.\",\"PeriodicalId\":338241,\"journal\":{\"name\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2011.6163985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于递归神经网络(RNN)的发音-语音反转(API)模型,用于改进语音识别。并引入了一种专门的优化算法,以有效的数据驱动方式实现类似人类的启发式学习,以捕捉英语语音发音的动态特性。在大词汇量语音识别实验中,该API模型显示了良好的语音建模能力和抗噪声污染的鲁棒性。利用简单的评分公式,在选定的TIMIT数据集上对隐马尔可夫模型(HMM)基线语音识别器进行改进,在干净语音和有噪声语音的音素识别任务中错误率分别降低了5.30%和10.14%。在SCRIBE-TIMIT词识别任务中,错误率降低了3.35%。所提出的系统具有通用性和可移植性等内在显著特征,具有深度语音建模的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel neural-based pronunciation modeling method for robust speech recognition
This paper describes a recurrent neural network (RNN) based articulatory-phonetic inversion (API) model for improved speech recognition. And a specialized optimization algorithm is introduced to enable human-like heuristic learning in an efficient data-driven manner to capture the dynamic nature of English speech pronunciations. The API model demonstrates superior pronunciation modeling ability and robustness against noise contaminations in large-vocabulary speech recognition experiments. Using a simple rescoring formula, it improves the hidden Markov model (HMM) baseline speech recognizer with consistent error rates reduction of 5.30% and 10.14% for phoneme recognition tasks on clean and noisy speech respectively on the selected TIMIT datasets. And an error rate reduction of 3.35% is obtained for the SCRIBE-TIMIT word recognition tasks. The proposed system qualifies as a competitive candidate for profound pronunciation modeling with intrinsic salient features such as generality and portability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Applying feature bagging for more accurate and robust automated speaking assessment Towards choosing better primes for spoken dialog systems Accent level adjustment in bilingual Thai-English text-to-speech synthesis Fast speaker diarization using a high-level scripting language Evaluating prosodic features for automated scoring of non-native read speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1