电机速度控制中速度估计器的设计与实现

Shou-Ming Sheng, Yan-Siun Li, Ming-Tzu Ho
{"title":"电机速度控制中速度估计器的设计与实现","authors":"Shou-Ming Sheng, Yan-Siun Li, Ming-Tzu Ho","doi":"10.1109/CACS.2018.8606755","DOIUrl":null,"url":null,"abstract":"This paper studies the problems of design and implementation of velocity estimators for motor velocity control. In practice, most servomotors use the encoder to measure the position of the motor and then use the conventional differential algorithm, dividing the displacement between two sampling points by the sampling time, to obtain the velocity for feedback control. However, this way can result in serious noise amplification. In this study, velocity estimators are used to solve this problem. This paper compares three velocity estimators including PI Servo-loop velocity estimator, Levant differentiator, and Kalman filter. First, MATLAB/Simulink are used to simulate these velocity estimation algorithms. For further validation, these velocity estimation algorithms are simulated and tested with the actual motor position signals. In experiments, the estimators are implemented on a digital signal processor (TMS320F28335) from Texas Instruments. As a result, the Kalman filter outperforms the other velocity estimators in velocity control.","PeriodicalId":282633,"journal":{"name":"2018 International Automatic Control Conference (CACS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Implementation of Velocity Estimators for Motor Velocity Control\",\"authors\":\"Shou-Ming Sheng, Yan-Siun Li, Ming-Tzu Ho\",\"doi\":\"10.1109/CACS.2018.8606755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the problems of design and implementation of velocity estimators for motor velocity control. In practice, most servomotors use the encoder to measure the position of the motor and then use the conventional differential algorithm, dividing the displacement between two sampling points by the sampling time, to obtain the velocity for feedback control. However, this way can result in serious noise amplification. In this study, velocity estimators are used to solve this problem. This paper compares three velocity estimators including PI Servo-loop velocity estimator, Levant differentiator, and Kalman filter. First, MATLAB/Simulink are used to simulate these velocity estimation algorithms. For further validation, these velocity estimation algorithms are simulated and tested with the actual motor position signals. In experiments, the estimators are implemented on a digital signal processor (TMS320F28335) from Texas Instruments. As a result, the Kalman filter outperforms the other velocity estimators in velocity control.\",\"PeriodicalId\":282633,\"journal\":{\"name\":\"2018 International Automatic Control Conference (CACS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Automatic Control Conference (CACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CACS.2018.8606755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Automatic Control Conference (CACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACS.2018.8606755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了电机速度控制中速度估计器的设计与实现问题。在实际应用中,大多数伺服电机使用编码器测量电机的位置,然后使用常规的差分算法,将两个采样点之间的位移除以采样时间,得到反馈控制的速度。然而,这种方式会导致严重的噪声放大。在本研究中,速度估计器被用来解决这个问题。本文比较了PI伺服环速度估计器、黎凡特微分器和卡尔曼滤波三种速度估计器。首先,利用MATLAB/Simulink对这些速度估计算法进行了仿真。为了进一步验证,这些速度估计算法与实际电机位置信号进行了模拟和测试。在实验中,该估计器在德州仪器公司的数字信号处理器TMS320F28335上实现。结果表明,卡尔曼滤波器在速度控制方面优于其他速度估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Implementation of Velocity Estimators for Motor Velocity Control
This paper studies the problems of design and implementation of velocity estimators for motor velocity control. In practice, most servomotors use the encoder to measure the position of the motor and then use the conventional differential algorithm, dividing the displacement between two sampling points by the sampling time, to obtain the velocity for feedback control. However, this way can result in serious noise amplification. In this study, velocity estimators are used to solve this problem. This paper compares three velocity estimators including PI Servo-loop velocity estimator, Levant differentiator, and Kalman filter. First, MATLAB/Simulink are used to simulate these velocity estimation algorithms. For further validation, these velocity estimation algorithms are simulated and tested with the actual motor position signals. In experiments, the estimators are implemented on a digital signal processor (TMS320F28335) from Texas Instruments. As a result, the Kalman filter outperforms the other velocity estimators in velocity control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of PD (Proportional Derivative) Control System On Six-Legged Wall Follower Robot A Wireless Control Mobile Hoist System The robot for recycling based on machine learning Object Transportation Using Networked Mobile Manipulators without Force/Torque Sensors A Method for Finding the Routes of Mazes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1