神经网络和元启发式在敏捷软件开发工作量评估中的作用

Anupama Kaushik, D. Tayal, Kalpana Yadav
{"title":"神经网络和元启发式在敏捷软件开发工作量评估中的作用","authors":"Anupama Kaushik, D. Tayal, Kalpana Yadav","doi":"10.4018/ijitpm.2020040104","DOIUrl":null,"url":null,"abstract":"In any software development, accurate estimation of resources is one of the crucial tasks that leads to a successful project development. A lot of work has been done in estimation of effort in traditional software development. But, work on estimation of effort for agile software development is very scant. This paper provides an effort estimation technique for agile software development using artificial neural networks (ANN) and a metaheuristic technique. The artificial neural networks used are radial basis function neural network (RBFN) and functional link artificial neural network (FLANN). The metaheuristic technique used is whale optimization algorithm (WOA), which is a nature-inspired metaheuristic technique. The proposed techniques FLANN-WOA and RBFN-WOA are evaluated on three agile datasets, and it is found that these neural network models performed extremely well with the metaheuristic technique used. This is further empirically validated using non-parametric statistical tests.","PeriodicalId":375999,"journal":{"name":"Int. J. Inf. Technol. Proj. Manag.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"The Role of Neural Networks and Metaheuristics in Agile Software Development Effort Estimation\",\"authors\":\"Anupama Kaushik, D. Tayal, Kalpana Yadav\",\"doi\":\"10.4018/ijitpm.2020040104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In any software development, accurate estimation of resources is one of the crucial tasks that leads to a successful project development. A lot of work has been done in estimation of effort in traditional software development. But, work on estimation of effort for agile software development is very scant. This paper provides an effort estimation technique for agile software development using artificial neural networks (ANN) and a metaheuristic technique. The artificial neural networks used are radial basis function neural network (RBFN) and functional link artificial neural network (FLANN). The metaheuristic technique used is whale optimization algorithm (WOA), which is a nature-inspired metaheuristic technique. The proposed techniques FLANN-WOA and RBFN-WOA are evaluated on three agile datasets, and it is found that these neural network models performed extremely well with the metaheuristic technique used. This is further empirically validated using non-parametric statistical tests.\",\"PeriodicalId\":375999,\"journal\":{\"name\":\"Int. J. Inf. Technol. Proj. Manag.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Inf. Technol. Proj. Manag.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijitpm.2020040104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Proj. Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijitpm.2020040104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在任何软件开发中,对资源的准确估计是导致项目开发成功的关键任务之一。在传统的软件开发中,在工作量评估方面已经做了大量的工作。但是,对于敏捷软件开发的工作量评估工作是非常少的。本文提出了一种基于人工神经网络和元启发式技术的敏捷软件开发工作量估算技术。所使用的人工神经网络有径向基函数神经网络(RBFN)和功能链接人工神经网络(FLANN)。使用的元启发式技术是鲸鱼优化算法(WOA),这是一种受自然启发的元启发式技术。在三个敏捷数据集上对所提出的FLANN-WOA和RBFN-WOA技术进行了评估,发现这些神经网络模型在使用元启发式技术时表现非常好。这是进一步的经验验证使用非参数统计检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Role of Neural Networks and Metaheuristics in Agile Software Development Effort Estimation
In any software development, accurate estimation of resources is one of the crucial tasks that leads to a successful project development. A lot of work has been done in estimation of effort in traditional software development. But, work on estimation of effort for agile software development is very scant. This paper provides an effort estimation technique for agile software development using artificial neural networks (ANN) and a metaheuristic technique. The artificial neural networks used are radial basis function neural network (RBFN) and functional link artificial neural network (FLANN). The metaheuristic technique used is whale optimization algorithm (WOA), which is a nature-inspired metaheuristic technique. The proposed techniques FLANN-WOA and RBFN-WOA are evaluated on three agile datasets, and it is found that these neural network models performed extremely well with the metaheuristic technique used. This is further empirically validated using non-parametric statistical tests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adapting P2M Framework for Innovation Program Management Through a Lean-Agile Approach Mining Project Failure Indicators From Big Data Using Machine Learning Mixed Methods A Proposal for Research on the Application of AI/ML in ITPM: Intelligent Project Management "Soar" or "Sore": Examining and Reflecting on Bank Performance During Global Financial Crisis - An Indian Scenario FDI Inflow in BRICS and G7: An Empirical Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1