航电任务计算的动态调度策略

D. Levine, C. Gill, D. Schmidt
{"title":"航电任务计算的动态调度策略","authors":"D. Levine, C. Gill, D. Schmidt","doi":"10.1109/DASC.1998.741482","DOIUrl":null,"url":null,"abstract":"Avionics mission computing systems have traditionally been scheduled statically. Static scheduling provides assurance of schedulability prior to run-time and can be implemented with low renting overhead. However static scheduling handles non-periodic processing inefficiently, and treats invocation-to-invocation variations in resource requirements inflexibly. As a consequence, processing resources am underutilized and the resulting systems are hard to adapt to meet worst-case processing requirements. Dynamic scheduling has the potential to offer relief from some of the restrictions imposed by strict static scheduling approaches. Potential benefits of dynamic scheduling include better tolerance for variations in activities, more flexible prioritization, and better CPU utilization in the presence of non-periodic activities. However the cost of these benefits is expected to be higher run-time scheduling overhead and additional application development complexity. This report reviews the implications of these tradeoffs for avionics mission computing systems and presents experimental results obtained using the Maximum Urgency First dynamic scheduling algorithm.","PeriodicalId":335827,"journal":{"name":"17th DASC. AIAA/IEEE/SAE. Digital Avionics Systems Conference. Proceedings (Cat. No.98CH36267)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Dynamic scheduling strategies for avionics mission computing\",\"authors\":\"D. Levine, C. Gill, D. Schmidt\",\"doi\":\"10.1109/DASC.1998.741482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Avionics mission computing systems have traditionally been scheduled statically. Static scheduling provides assurance of schedulability prior to run-time and can be implemented with low renting overhead. However static scheduling handles non-periodic processing inefficiently, and treats invocation-to-invocation variations in resource requirements inflexibly. As a consequence, processing resources am underutilized and the resulting systems are hard to adapt to meet worst-case processing requirements. Dynamic scheduling has the potential to offer relief from some of the restrictions imposed by strict static scheduling approaches. Potential benefits of dynamic scheduling include better tolerance for variations in activities, more flexible prioritization, and better CPU utilization in the presence of non-periodic activities. However the cost of these benefits is expected to be higher run-time scheduling overhead and additional application development complexity. This report reviews the implications of these tradeoffs for avionics mission computing systems and presents experimental results obtained using the Maximum Urgency First dynamic scheduling algorithm.\",\"PeriodicalId\":335827,\"journal\":{\"name\":\"17th DASC. AIAA/IEEE/SAE. Digital Avionics Systems Conference. Proceedings (Cat. No.98CH36267)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"17th DASC. AIAA/IEEE/SAE. Digital Avionics Systems Conference. Proceedings (Cat. No.98CH36267)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASC.1998.741482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th DASC. AIAA/IEEE/SAE. Digital Avionics Systems Conference. Proceedings (Cat. No.98CH36267)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.1998.741482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

传统上,航空电子任务计算系统是静态调度的。静态调度在运行之前提供了可调度性的保证,并且可以以较低的租用开销实现。但是,静态调度处理非周期性处理的效率较低,并且不灵活地处理资源需求中的调用到调用变化。因此,处理资源得不到充分利用,所得到的系统难以适应最坏情况下的处理要求。动态调度有可能减轻严格的静态调度方法所施加的一些限制。动态调度的潜在好处包括更好地容忍活动的变化、更灵活的优先级以及在存在非周期性活动时更好的CPU利用率。然而,这些好处的代价是更高的运行时调度开销和额外的应用程序开发复杂性。本报告回顾了这些权衡对航电任务计算系统的影响,并介绍了使用最大紧急优先动态调度算法获得的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic scheduling strategies for avionics mission computing
Avionics mission computing systems have traditionally been scheduled statically. Static scheduling provides assurance of schedulability prior to run-time and can be implemented with low renting overhead. However static scheduling handles non-periodic processing inefficiently, and treats invocation-to-invocation variations in resource requirements inflexibly. As a consequence, processing resources am underutilized and the resulting systems are hard to adapt to meet worst-case processing requirements. Dynamic scheduling has the potential to offer relief from some of the restrictions imposed by strict static scheduling approaches. Potential benefits of dynamic scheduling include better tolerance for variations in activities, more flexible prioritization, and better CPU utilization in the presence of non-periodic activities. However the cost of these benefits is expected to be higher run-time scheduling overhead and additional application development complexity. This report reviews the implications of these tradeoffs for avionics mission computing systems and presents experimental results obtained using the Maximum Urgency First dynamic scheduling algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The network vehicle-a glimpse into the future of mobile multi-media Fault protection design of the quikscat and seawinds instruments Microfabricated chemical sensors for safety and emission control applications Managing multi-platform sensor systems Air data sensor failure detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1