基于noc的多核非侵入式监控框架

Angelo Elias Dalzotto, Caroline da Silva Borges, Marcelo Ruaro, F. Moraes
{"title":"基于noc的多核非侵入式监控框架","authors":"Angelo Elias Dalzotto, Caroline da Silva Borges, Marcelo Ruaro, F. Moraes","doi":"10.1109/SBESC56799.2022.9965177","DOIUrl":null,"url":null,"abstract":"Many-core Systems on Chip (MCSoCs) require resource management to achieve scalability at the computation and communication levels. The monitoring infrastructure feeds management tasks with raw data, enabling these tasks to detect behaviors corresponding to constraint violations or a trend that signalizes a future violation. Several works available in the literature use monitoring to apply their management techniques but do not specify how to implement the monitoring framework. We propose a monitoring framework for MCSoCs, with the following features: (i) generic: the infrastructure can carry data related to different monitored features; (ii) monitored data does not disturb NoC flows; and (iii) reduced overhead compared to other monitoring methods. The monitoring framework is loosely coupled to the MCSoC by using a dedicated NoC to carry monitoring and management messages, decoupling data traffic from management traffic. Results adopt the Observe-Decide-Act management method, comparing the proposed monitoring framework to a standard monitoring approach. Results show a reduction in the data NoC traffic (12%), faster management responsiveness to act on deadline violations (up to 77%), and reduced applications execution time (on average 8%).","PeriodicalId":130479,"journal":{"name":"2022 XII Brazilian Symposium on Computing Systems Engineering (SBESC)","volume":"232 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-intrusive Monitoring Framework for NoC-based Many-Cores\",\"authors\":\"Angelo Elias Dalzotto, Caroline da Silva Borges, Marcelo Ruaro, F. Moraes\",\"doi\":\"10.1109/SBESC56799.2022.9965177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many-core Systems on Chip (MCSoCs) require resource management to achieve scalability at the computation and communication levels. The monitoring infrastructure feeds management tasks with raw data, enabling these tasks to detect behaviors corresponding to constraint violations or a trend that signalizes a future violation. Several works available in the literature use monitoring to apply their management techniques but do not specify how to implement the monitoring framework. We propose a monitoring framework for MCSoCs, with the following features: (i) generic: the infrastructure can carry data related to different monitored features; (ii) monitored data does not disturb NoC flows; and (iii) reduced overhead compared to other monitoring methods. The monitoring framework is loosely coupled to the MCSoC by using a dedicated NoC to carry monitoring and management messages, decoupling data traffic from management traffic. Results adopt the Observe-Decide-Act management method, comparing the proposed monitoring framework to a standard monitoring approach. Results show a reduction in the data NoC traffic (12%), faster management responsiveness to act on deadline violations (up to 77%), and reduced applications execution time (on average 8%).\",\"PeriodicalId\":130479,\"journal\":{\"name\":\"2022 XII Brazilian Symposium on Computing Systems Engineering (SBESC)\",\"volume\":\"232 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 XII Brazilian Symposium on Computing Systems Engineering (SBESC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBESC56799.2022.9965177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 XII Brazilian Symposium on Computing Systems Engineering (SBESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBESC56799.2022.9965177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多核片上系统(mcsoc)需要资源管理来实现计算和通信级别的可扩展性。监视基础设施为管理任务提供原始数据,使这些任务能够检测与约束违规或指示未来违规的趋势相对应的行为。文献中有几部作品使用监测来应用他们的管理技术,但没有具体说明如何实施监测框架。我们提出了一个mcsoc的监控框架,具有以下特点:(i)通用性:基础设施可以携带与不同监控特征相关的数据;(ii)监测数据不会干扰NoC流量;(三)与其他监测方法相比,减少了开销。监控框架通过使用专用的NoC来携带监控和管理消息,与MCSoC松散耦合,将数据流量与管理流量分离。结果采用观察-决定-行动管理方法,将所提出的监测框架与标准监测方法进行比较。结果显示,数据NoC流量减少了12%,对违反截止日期的行为的管理响应速度加快了77%,应用程序执行时间减少了8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-intrusive Monitoring Framework for NoC-based Many-Cores
Many-core Systems on Chip (MCSoCs) require resource management to achieve scalability at the computation and communication levels. The monitoring infrastructure feeds management tasks with raw data, enabling these tasks to detect behaviors corresponding to constraint violations or a trend that signalizes a future violation. Several works available in the literature use monitoring to apply their management techniques but do not specify how to implement the monitoring framework. We propose a monitoring framework for MCSoCs, with the following features: (i) generic: the infrastructure can carry data related to different monitored features; (ii) monitored data does not disturb NoC flows; and (iii) reduced overhead compared to other monitoring methods. The monitoring framework is loosely coupled to the MCSoC by using a dedicated NoC to carry monitoring and management messages, decoupling data traffic from management traffic. Results adopt the Observe-Decide-Act management method, comparing the proposed monitoring framework to a standard monitoring approach. Results show a reduction in the data NoC traffic (12%), faster management responsiveness to act on deadline violations (up to 77%), and reduced applications execution time (on average 8%).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed Learning using Consensus on Edge AI Integrating Autonomous Vehicle Simulation Tools using SmartData Trusted Monitor: TEE-Based System Monitoring Possible risks with EVT-based timing analysis: an experimental study on a multi-core platform Data-driven Anomaly Detection of Engine Knock based on Automotive ECU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1