基于人工神经网络的电力变压器绕组频响偏差识别

Ketan R. Gandhi, K. Badgujar
{"title":"基于人工神经网络的电力变压器绕组频响偏差识别","authors":"Ketan R. Gandhi, K. Badgujar","doi":"10.1109/AICERA.2014.6908217","DOIUrl":null,"url":null,"abstract":"Deformations in windings can be diagnosed by a reliable and powerful method called sweep frequency response analysis (SFRA). In this work the deviation in the frequency response plots is derived in terms of statistical indicators. Nine statistical indicators have been used for the purpose. These indicators, then, complemented using artificial neural network approach, to derive a useful conclusion regarding the deviation based on the frequency responses. Winding deformation case data along with healthy transformer case data have been used to train a multilayer feed-forward neural network with the backpropagation algorithm. The trained neural network can help an expert to analyse statistical indicators to verify the level of deviation and in turn the level of deformation.","PeriodicalId":425226,"journal":{"name":"2014 Annual International Conference on Emerging Research Areas: Magnetics, Machines and Drives (AICERA/iCMMD)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Artificial neural network based identification of deviation in frequency response of power transformer windings\",\"authors\":\"Ketan R. Gandhi, K. Badgujar\",\"doi\":\"10.1109/AICERA.2014.6908217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deformations in windings can be diagnosed by a reliable and powerful method called sweep frequency response analysis (SFRA). In this work the deviation in the frequency response plots is derived in terms of statistical indicators. Nine statistical indicators have been used for the purpose. These indicators, then, complemented using artificial neural network approach, to derive a useful conclusion regarding the deviation based on the frequency responses. Winding deformation case data along with healthy transformer case data have been used to train a multilayer feed-forward neural network with the backpropagation algorithm. The trained neural network can help an expert to analyse statistical indicators to verify the level of deviation and in turn the level of deformation.\",\"PeriodicalId\":425226,\"journal\":{\"name\":\"2014 Annual International Conference on Emerging Research Areas: Magnetics, Machines and Drives (AICERA/iCMMD)\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Annual International Conference on Emerging Research Areas: Magnetics, Machines and Drives (AICERA/iCMMD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICERA.2014.6908217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Annual International Conference on Emerging Research Areas: Magnetics, Machines and Drives (AICERA/iCMMD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICERA.2014.6908217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

扫描频响分析(SFRA)是一种可靠而有效的方法,可用于诊断绕组的变形。在这项工作中,频率响应图的偏差是根据统计指标推导出来的。为此目的使用了九项统计指标。然后,使用人工神经网络方法对这些指标进行补充,得出关于基于频率响应的偏差的有用结论。利用绕组变形情况数据和变压器健康情况数据,用反向传播算法训练多层前馈神经网络。经过训练的神经网络可以帮助专家分析统计指标来验证偏差的程度,进而验证变形的程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial neural network based identification of deviation in frequency response of power transformer windings
Deformations in windings can be diagnosed by a reliable and powerful method called sweep frequency response analysis (SFRA). In this work the deviation in the frequency response plots is derived in terms of statistical indicators. Nine statistical indicators have been used for the purpose. These indicators, then, complemented using artificial neural network approach, to derive a useful conclusion regarding the deviation based on the frequency responses. Winding deformation case data along with healthy transformer case data have been used to train a multilayer feed-forward neural network with the backpropagation algorithm. The trained neural network can help an expert to analyse statistical indicators to verify the level of deviation and in turn the level of deformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An improved indirect vector controlled current source inverter fed induction motor drive with rotor resistance adaptation Reconstruction of cloud contaminated information in optical satellite images Comparison of capacitor voltage balancing techniques in multilevel inverters Step modulated multilevel inverter incorporated upon ANFIS based intelligent PV MPPT Sub- 0.18μm low leakage and high performance dynamic logic wide fan-in gates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1