{"title":"轧机万向主轴铰链润滑系统的研制","authors":"S. Rakhmanov","doi":"10.32339/0135-5910-2021-9-1047-1053","DOIUrl":null,"url":null,"abstract":"The experience of running drives of most of heavy-duty rolling mills shows that the designs of universal spindles with blade hinges under conditions of increased alternating loads are most acceptable comparing with other spindles types. Open friction surfaces are the drawbacks of these types of spindles, which complicate the matter of continuous supply of lubrication. Perfected effective system of forced lubrication of rolling mill spindles hinges proposed. The facility for their lubrication has a bearing support of balancing design, spindle, in radial holes of which spring-loaded plungers are installed in a diametrically opposite order. Besides, the facility has suction valves and force valves installed in the spindle axial holes, connecting with the radial ones. A methodology proposed to select the eccentricity of the internal cylindrical surface of the bearing support of the spindle hinge, the axis of which is located eccentrically relative the spindle rotation axis. A calculating scheme and a mathematical model of the process of lubrication supply into joints of rolling mill spindle hinge elaborated. A differential equation of lubrication motion in the conical slot of the hinge between a blade and insertions drawn up. Parameters of hydrodynamic motion of lubrication in the conical slot established. Modes of the lubrication motion in the conical slot between roller blade and hinge insertion determined. Based on experience of operation of friction couple bronze-steel, a lubrication for rolling mills universal spindles proposed. To improve the operation characteristics of hinges based on the friction couple bronze-steel, a thick lubrication having antifriction properties namely based on oils with additives ИП-10, КП-10 and ДФ-11 proposed. Dependence of pressure distribution along the length of the hinge conical slot presented for various lubrications of low viscosity (ИП-10 + ДФ-11) and high viscosity (КП-10 + ДФ-11). The quality effect of the speed of roller blade movable wall on distribution of speeds of lubrication layer motion over the height of the hinge conical slot for comparatively low and comparatively high boundary speeds demonstrated.","PeriodicalId":259995,"journal":{"name":"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elaboration of a lubrication system for universal spindle hinges of rolling mills\",\"authors\":\"S. Rakhmanov\",\"doi\":\"10.32339/0135-5910-2021-9-1047-1053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The experience of running drives of most of heavy-duty rolling mills shows that the designs of universal spindles with blade hinges under conditions of increased alternating loads are most acceptable comparing with other spindles types. Open friction surfaces are the drawbacks of these types of spindles, which complicate the matter of continuous supply of lubrication. Perfected effective system of forced lubrication of rolling mill spindles hinges proposed. The facility for their lubrication has a bearing support of balancing design, spindle, in radial holes of which spring-loaded plungers are installed in a diametrically opposite order. Besides, the facility has suction valves and force valves installed in the spindle axial holes, connecting with the radial ones. A methodology proposed to select the eccentricity of the internal cylindrical surface of the bearing support of the spindle hinge, the axis of which is located eccentrically relative the spindle rotation axis. A calculating scheme and a mathematical model of the process of lubrication supply into joints of rolling mill spindle hinge elaborated. A differential equation of lubrication motion in the conical slot of the hinge between a blade and insertions drawn up. Parameters of hydrodynamic motion of lubrication in the conical slot established. Modes of the lubrication motion in the conical slot between roller blade and hinge insertion determined. Based on experience of operation of friction couple bronze-steel, a lubrication for rolling mills universal spindles proposed. To improve the operation characteristics of hinges based on the friction couple bronze-steel, a thick lubrication having antifriction properties namely based on oils with additives ИП-10, КП-10 and ДФ-11 proposed. Dependence of pressure distribution along the length of the hinge conical slot presented for various lubrications of low viscosity (ИП-10 + ДФ-11) and high viscosity (КП-10 + ДФ-11). The quality effect of the speed of roller blade movable wall on distribution of speeds of lubrication layer motion over the height of the hinge conical slot for comparatively low and comparatively high boundary speeds demonstrated.\",\"PeriodicalId\":259995,\"journal\":{\"name\":\"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32339/0135-5910-2021-9-1047-1053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32339/0135-5910-2021-9-1047-1053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Elaboration of a lubrication system for universal spindle hinges of rolling mills
The experience of running drives of most of heavy-duty rolling mills shows that the designs of universal spindles with blade hinges under conditions of increased alternating loads are most acceptable comparing with other spindles types. Open friction surfaces are the drawbacks of these types of spindles, which complicate the matter of continuous supply of lubrication. Perfected effective system of forced lubrication of rolling mill spindles hinges proposed. The facility for their lubrication has a bearing support of balancing design, spindle, in radial holes of which spring-loaded plungers are installed in a diametrically opposite order. Besides, the facility has suction valves and force valves installed in the spindle axial holes, connecting with the radial ones. A methodology proposed to select the eccentricity of the internal cylindrical surface of the bearing support of the spindle hinge, the axis of which is located eccentrically relative the spindle rotation axis. A calculating scheme and a mathematical model of the process of lubrication supply into joints of rolling mill spindle hinge elaborated. A differential equation of lubrication motion in the conical slot of the hinge between a blade and insertions drawn up. Parameters of hydrodynamic motion of lubrication in the conical slot established. Modes of the lubrication motion in the conical slot between roller blade and hinge insertion determined. Based on experience of operation of friction couple bronze-steel, a lubrication for rolling mills universal spindles proposed. To improve the operation characteristics of hinges based on the friction couple bronze-steel, a thick lubrication having antifriction properties namely based on oils with additives ИП-10, КП-10 and ДФ-11 proposed. Dependence of pressure distribution along the length of the hinge conical slot presented for various lubrications of low viscosity (ИП-10 + ДФ-11) and high viscosity (КП-10 + ДФ-11). The quality effect of the speed of roller blade movable wall on distribution of speeds of lubrication layer motion over the height of the hinge conical slot for comparatively low and comparatively high boundary speeds demonstrated.