轧机万向主轴铰链润滑系统的研制

S. Rakhmanov
{"title":"轧机万向主轴铰链润滑系统的研制","authors":"S. Rakhmanov","doi":"10.32339/0135-5910-2021-9-1047-1053","DOIUrl":null,"url":null,"abstract":"The experience of running drives of most of heavy-duty rolling mills shows that the designs of universal spindles with blade hinges under conditions of increased alternating loads are most acceptable comparing with other spindles types. Open friction surfaces are the drawbacks of these types of spindles, which complicate the matter of continuous supply of lubrication. Perfected effective system of forced lubrication of rolling mill spindles hinges proposed. The facility for their lubrication has a bearing support of balancing design, spindle, in radial holes of which spring-loaded plungers are installed in a diametrically opposite order. Besides, the facility has suction valves and force valves installed in the spindle axial holes, connecting with the radial ones. A methodology proposed to select the eccentricity of the internal cylindrical surface of the bearing support of the spindle hinge, the axis of which is located eccentrically relative the spindle rotation axis. A calculating scheme and a mathematical model of the process of lubrication supply into joints of rolling mill spindle hinge elaborated. A differential equation of lubrication motion in the conical slot of the hinge between a blade and insertions drawn up. Parameters of hydrodynamic motion of lubrication in the conical slot established. Modes of the lubrication motion in the conical slot between roller blade and hinge insertion determined. Based on experience of operation of friction couple bronze-steel, a lubrication for rolling mills universal spindles proposed. To improve the operation characteristics of hinges based on the friction couple bronze-steel, a thick lubrication having antifriction properties namely based on oils with additives ИП-10, КП-10 and ДФ-11 proposed. Dependence of pressure distribution along the length of the hinge conical slot presented for various lubrications of low viscosity (ИП-10 + ДФ-11) and high viscosity (КП-10 + ДФ-11). The quality effect of the speed of roller blade movable wall on distribution of speeds of lubrication layer motion over the height of the hinge conical slot for comparatively low and comparatively high boundary speeds demonstrated.","PeriodicalId":259995,"journal":{"name":"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elaboration of a lubrication system for universal spindle hinges of rolling mills\",\"authors\":\"S. Rakhmanov\",\"doi\":\"10.32339/0135-5910-2021-9-1047-1053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The experience of running drives of most of heavy-duty rolling mills shows that the designs of universal spindles with blade hinges under conditions of increased alternating loads are most acceptable comparing with other spindles types. Open friction surfaces are the drawbacks of these types of spindles, which complicate the matter of continuous supply of lubrication. Perfected effective system of forced lubrication of rolling mill spindles hinges proposed. The facility for their lubrication has a bearing support of balancing design, spindle, in radial holes of which spring-loaded plungers are installed in a diametrically opposite order. Besides, the facility has suction valves and force valves installed in the spindle axial holes, connecting with the radial ones. A methodology proposed to select the eccentricity of the internal cylindrical surface of the bearing support of the spindle hinge, the axis of which is located eccentrically relative the spindle rotation axis. A calculating scheme and a mathematical model of the process of lubrication supply into joints of rolling mill spindle hinge elaborated. A differential equation of lubrication motion in the conical slot of the hinge between a blade and insertions drawn up. Parameters of hydrodynamic motion of lubrication in the conical slot established. Modes of the lubrication motion in the conical slot between roller blade and hinge insertion determined. Based on experience of operation of friction couple bronze-steel, a lubrication for rolling mills universal spindles proposed. To improve the operation characteristics of hinges based on the friction couple bronze-steel, a thick lubrication having antifriction properties namely based on oils with additives ИП-10, КП-10 and ДФ-11 proposed. Dependence of pressure distribution along the length of the hinge conical slot presented for various lubrications of low viscosity (ИП-10 + ДФ-11) and high viscosity (КП-10 + ДФ-11). The quality effect of the speed of roller blade movable wall on distribution of speeds of lubrication layer motion over the height of the hinge conical slot for comparatively low and comparatively high boundary speeds demonstrated.\",\"PeriodicalId\":259995,\"journal\":{\"name\":\"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32339/0135-5910-2021-9-1047-1053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32339/0135-5910-2021-9-1047-1053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数重型轧机运行传动的经验表明,与其他类型的主轴相比,在交变负荷增加的条件下,带叶片铰链的万向主轴设计是最可接受的。开放的摩擦表面是这些类型的主轴的缺点,使润滑的持续供应问题复杂化。提出了完善有效的轧机主轴铰强制润滑系统。用于润滑的设备有一个平衡设计的轴承支撑,主轴,在径向孔中,弹簧柱塞以完全相反的顺序安装。此外,在主轴轴向孔内安装有吸阀和力阀,并与径向阀相连接。提出了一种主轴铰链轴承支承内圆柱面相对于主轴旋转轴偏心位置的偏心度选择方法。阐述了轧机主轴铰接头润滑供给过程的计算方案和数学模型。建立了叶片与插片之间铰链的锥形槽内润滑运动的微分方程。建立了锥形槽内润滑流体动力运动参数。确定了滚轮叶片与铰链插入间锥形槽内的润滑运动模式。根据铜钢摩擦副的运行经验,提出了轧机万向主轴的润滑方法。为了改善铜钢摩擦副铰链的工作特性,提出了一种以添加ИП-10、КП-10和ДФ-11的润滑油为基础的具有抗磨性能的厚润滑液。低黏度(ИП-10 + ДФ-11)和高黏度(КП-10 + ДФ-11)润滑时,沿铰链锥槽长度压力分布的依赖性。在较低边界速度和较高边界速度情况下,滚轮叶片活动壁面速度对润滑层运动速度沿铰链锥形槽高度分布的质量影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elaboration of a lubrication system for universal spindle hinges of rolling mills
The experience of running drives of most of heavy-duty rolling mills shows that the designs of universal spindles with blade hinges under conditions of increased alternating loads are most acceptable comparing with other spindles types. Open friction surfaces are the drawbacks of these types of spindles, which complicate the matter of continuous supply of lubrication. Perfected effective system of forced lubrication of rolling mill spindles hinges proposed. The facility for their lubrication has a bearing support of balancing design, spindle, in radial holes of which spring-loaded plungers are installed in a diametrically opposite order. Besides, the facility has suction valves and force valves installed in the spindle axial holes, connecting with the radial ones. A methodology proposed to select the eccentricity of the internal cylindrical surface of the bearing support of the spindle hinge, the axis of which is located eccentrically relative the spindle rotation axis. A calculating scheme and a mathematical model of the process of lubrication supply into joints of rolling mill spindle hinge elaborated. A differential equation of lubrication motion in the conical slot of the hinge between a blade and insertions drawn up. Parameters of hydrodynamic motion of lubrication in the conical slot established. Modes of the lubrication motion in the conical slot between roller blade and hinge insertion determined. Based on experience of operation of friction couple bronze-steel, a lubrication for rolling mills universal spindles proposed. To improve the operation characteristics of hinges based on the friction couple bronze-steel, a thick lubrication having antifriction properties namely based on oils with additives ИП-10, КП-10 and ДФ-11 proposed. Dependence of pressure distribution along the length of the hinge conical slot presented for various lubrications of low viscosity (ИП-10 + ДФ-11) and high viscosity (КП-10 + ДФ-11). The quality effect of the speed of roller blade movable wall on distribution of speeds of lubrication layer motion over the height of the hinge conical slot for comparatively low and comparatively high boundary speeds demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of technology schemes for the production of cast composite functional materials Forecasting of industrial coke quality at JSC EVRAZ NTMK based on data of passive industrial experiment. Report 1. Forecasting of CSR and CRI of industrial coke Recognition of surface defects of rolled steel in sheets by application micro-X-ray spectral analysis Influence of particles size distribution on the carbon content throughout sinter bed height Study of possibility of obtaining alternative binders from production wastes for filling man-caused voids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1